

Effect of Al₂O₃ passivation layer in irradiated n-on-p strip sensors

27th RD50 Workshop, 2-4 Dec. 2015

T. Peltola¹⁾, J. Härkönen¹⁾

¹⁾Helsinki Institute of Physics, P.O. Box 64, FI-00014 University of Helsinki, Finland

Outline

- Motivation
- **☐** Non-irradiated strip sensors:
 - Simulated alumina vs p-stop/p-spray
 - o R_{int}, C_{int} & V_{bd}
- □ Accumulation of negative oxide charge:
 - MOS structure measurements & simulations
- \square Al₂O₃ layer vs p-stop/p-spray in strip sensors:
 - Proton irradiated Φ=2e15 n_{eq}cm⁻²:
 - o CV/IV & C_{int}
 - CCE & CCE loss between strips
- **☐** Summary & Conclusions

Motivation

Segmented n-on-p sensors: Challenges

- \square Positive oxide charge \rightarrow need for isolation implantations \rightarrow requires more:
 - Mask levels (=price)
 - High temperature processing steps
- Finer granularity increases local electric fields → lower breakdown voltage
- ☐ More implants mean higher capacitances (=noise, lower rise time of signal)

[1] J. Härkönen et al., 10th Hiroshima Symposium, 2015

ALD for radiation hard detectors

☐ Atomic Layer Deposition (ALD)

- provides many potentially interesting material systems, e.g. high ϵ materials HfO₂, ZrO₂ etc.
- With ALD one can tailor amount and type of oxide charge
- ALD is pinhole free deposition → practically stress free
- ALD is applicable on large surfaces
- ALD is low temperature process, typically ~300° C

ALD grown Al₂O₃: Electrical passivation

dominates

200

Lifetime [µs]

10000

2000

4000

Lifetime [µs]

6000

8000

[1]

1000

800

Non-irradiated strip sensors

Simulation structures & parameters

- □ 200 µm thick n-on-p (V_{fd}=30 V) 3-strip structure @ T=293 K
- □ Pitch=55 μm, implant width=30 μm, MO=3 μm, DC-coupled
- **Double p-stop:** width=2 μm, depth=1.5 μm, spacing=4 μm, $N_p = 5e16$ cm⁻³
- \square p-spray: depth=1.0 μ m, N_p=1e16 cm⁻³
- □ No isolation structures: SiO₂ & Al₂O₃ (alumina) passivation layers with opposite sign interface charge densities Q_f

$Q_f = (0.5-1)e11 \text{ cm}^{-2}$: $R_{int} \& C_{int}$

Simulated R_{int} & C_{int} for typical values of Q_f in non-irradiated sensor:

- ☐ non-isolated: strips shorted
- □ p-spray: strips isolated, highest C_{int} values
- □ p-stop: strips isolated, low C_{int}
- \square 250 nm alumina: strips isolated, increased $Q_f \rightarrow$ more holes at the accumulation layer \rightarrow

higher C_{int}

Q_f=5e11 cm⁻²: R_{int} & C_{int}

- ☐ non-isolated & p-spray: strips shorted
- □ p-stop: strips isolated
- □ 250 nm alumina: strips isolated, highest C_{int} @ V < 110 V
- □ 52 nm alumina: 4 orders lower R_{int}, higher voltage needed for low C_{int}, no initial peak in C_{int}

Thicker alumina layer → higher R_{int}, lower C_{int}

P-stop vs thick alumina: essentially equal surface properties

Breakdown voltage: p-stop vs alumina

- □ p-stop: higher Q_f → more acceptor levels at p-stops are compensated by electrons → lower E-fields & higher V_{hd} (also lower R_{int})
- **□ 250 nm alumina:** higher $Q_f \rightarrow$ more holes at accumulation layer \rightarrow higher E-fields & lower V_{bd} ; $|V_{bd}| > 1$ kV @ highest Q_f values for non-irradiated sensor
- □ 52 nm alumina: thinner layer results in ~300 V lower V_{bd} for each Q_f

Irradiated MOS & strip sensors

MOS-structure: Measured & simulated V_{fb}

- \square γ -irradiated MOS test structure with 40 nm thick Al_2O_3 layer
- \square Shift of V_{fb} to higher forward bias voltage \rightarrow accumulation of negative oxide charge
- ☐ Simulations of identical structure verify the observed behavior

500 nm Al

40 nm alumina

300 µm p-type Si

 \square Q_f with N_{it} : No effect to V_{fb} , affects only C offset

MOS-structure: Extraction of Q_f

- \square Simulation as an extension of measurement: find interface charge density Q_f corresponding to measured ΔV_{fb}
- \Box Linear increase of ΔV_{fb} with $Q_f \rightarrow$ use slope & measured ΔV_{fb}

■ Resulting estimation of Q_f: significant accumulation of negative oxide charge density at Al₂O₃/Si interface

Strips @ Φ=2e15 n_{eq}cm⁻²: LC

- \square 3.88 cm*3.78 cm*298 μ m n-on-p 3-strip structure, Al_2O_3 : thickness=52 nm
- □ Pitch=80 μm, implant width=10 μm, MO=2 μm, AC-coupled
- As in measured sensor
- □ Defects: non-uniform 3-level model, Φ=2e15 n_{eq} cm⁻² \rightarrow V_{fd} ≈0.8-1 kV (model validated only up to ~1.5e15 n_{eq}cm⁻²)
- \Box Simulated & calculated LC normalized to T=-53.4° C by $\alpha(219.6 \text{ K}) = 1.35\text{e}-20 \text{ A/cm}$
- \square $Q_f = 1.8e12 \text{ cm}^{-2}$: alumina: Simulation converges only when interface donor traps added ($E_V + 0.6 \text{ eV}$)

☐ Alumina: CM affects the simulated LC (-4e10 cm⁻² max value for simulation @ 1.1 kV without N_{it})

Alumina: LC ratio of measured to simulated

Strips @ Φ=2e15 n_{eq}cm⁻²: Simulated CV & C_{int}

☐ Corresponding CV to LC simulations on previous slide @ T=253 K

compensated by acceptors

- \square P-stop CV-curve normalized to alumina curve due to higher Q_f value \rightarrow higher charge in sensor
- \square $Q_f = 1.8e12 \text{ cm}^{-2}$: Alumina C_{int} stays below p-stop values also at reduced N_{it} (no convergence below $N_{it} = 1.2e12 \text{ cm}^{-2}$ due to high E-fields)

Strips @ Φ=2e15 n_{eq}cm⁻²: Measured CCE

- □ ~300 µm thick n-on-p MCz-Si strip detector with ALD-grown Al₂O₃ insulator
- ☐ Full charge recorded from the telescope's non-irradiated reference planes ~40 ADC

☐ Very high CCE at high V for given fluence & sensor thickness

Strips @ Φ =2e15 n_{eq}cm⁻²: CCE & CCE(x)

- □ **Defect model:** proton model at bulk, 3 level model at 2 µm from surface = 'non-unif. 3-level model'
- ☐ Collected charge: average of CC from MIP injections at midgap & center of strip
- \Box Q_f = 1.8e12 cm⁻²:
 - p-spray: strips shorted → defect model not sufficient at high Φ & Q_f
 - p-stop: strips isolated
 - **alumina:** Simulation converges only when interface donor traps added (E_V +0.6 eV)

Simulations predict very low position dependence of CCE in real sensor with alumina insulator

Summary

- □ ALD-grown Al₂O₃ (alumina) field insulator for strip sensors:
 - Low T process < 400° C
 - High negative oxide charge after sintering
 - Strip sensors show comparable SNR with commercial detectors = good capacitive coupling
 - N-on-p detector made by simply one field insulator significantly reduces the complexity & price of sensor processing

Measurement & TCAD simulation study:

- **□** non-irradiated strip sensors:
 - **52 nm alumina:** $R_{int} \sim 500 \text{ M}\Omega \rightarrow \text{good strip isolation}$, C_{int} comparable to p-stop values, $V_{bd} > 1.5 \text{ kV}$ for expected Q_f values
- \square γ -irradiated MOS structure with 40 nm Al₂O₃:
 - Measurement & simulation results suggest significant accumulation of negative oxide charge
- □ Proton irradiated strip sensor with 52 nm alumina:
 - High E-fields require implementation of N_{it} to model measured V with realistic Q_f values \rightarrow with N_{it} very low C_{int}
 - High measured CCE at 1.1 kV possibly due to CM → simulations predict very low position dependence of CCE in real sensor

Backup: Publications on ALD

- Putkonen, M., Niinistö, J., Kukli, K., Sajavaara, T., Karppinen, M., Yamauchi, H., and Niinistö, L., ZrO₂ thin films grown on silicon substrates by atomic layer deposition with Cp₂Zr(CH₃)₂ and water as precursors, Chemical Vapor Deposition 9 (2003) 207-212.
- Niinistö, J., Putkonen, M., Niinistö, L., Kukli, K., Ritala, M., and Leskelä, M., Structural and dielectric properties of thin ZrO₂ films on silicon grown by atomic layer deposition from cyclopentadienyl precursor, Journal of Applied Physics 95 (2004) 84-91.
- Niinistö, J., Rahtu, A., Putkonen, M., Ritala, M., Leskelä, M., and Niinistö, L., In situ quadrupole mass spectrometry study of atomic-layer deposition of ZrO₂ using Cp₂Zr(CH₃)₂ and water, Langmuir 21 (2005) 7321-7325.
- Niinistö, J., Putkonen, M., Niinistö, L., Stoll, S. L., Kukli, K., Sajavaara, T., Ritala, M., and Leskelä, M., Controlled growth of HfO₂ thin films by atomic layer deposition from cyclopentadienyl-type precursor and water, Journal of Materials Chemistry 15 (2005) 2271-2275.
- Niinistö, J., Putkonen, M., Niinistö, L., Arstila, K., Sajavaara, T., Lu, J., Kukli, K., Ritala, M., and Leskelä, M., HfO₂ films grown by ALD using cyclopentadienyl-type precursors and H₂O or O₃ as oxygen source, Journal of The Electrochemical Society 153 (2006) F39-F45.
- Niinistö, J., Putkonen, M., and Niinistö, L., Processing of Y₂O₃ thin films by atomic layer deposition from cyclopentadienyl-type compounds and water as precursors, Chemistry of Materials 16 (2004) 2953-2958.
- Niinistö, J., Petrova, N., Putkonen, M., Sajavaara, T., Arstila, K., and Niinistö L., Gadolinium oxide thin films by atomic layer deposition, Journal of Crystal Growth 285 (2005) 191-200.
- 8. Päiväsaari, J., Niinistö, J., Arstila, K., Kukli, K., Putkonen, M., and Niinistö, L., High growth rate of erbium oxide thin films in atomic layer deposition from (CpMe)₃Er and water precursors, Chemical Vapor Deposition 11 (2005) 415-419.
- Myllymäki, P., Nieminen, M., Niinistö, J., Putkonen, M., Kukli, K., and Niinistö, L., High-permittivity YScO₃ thin films by atomic layer deposition using two precursor approaches, Journal of Materials Chemistry 16 (2006) 563-567.

Back-up: Measured & simulated CCE(x)

Test beam measurement:

- Strips isolated
- CCE loss between strips ~30%

Interpretation: Irradiation produces non-uniform distribution of shallow traps close to surface → greater drift distance, higher trapping of carriers
[T. Peltola, JINST 9 (2014) C12010]

□ Traps remove both interface & signal electrons: better radiation induced strip isolation → higher CCE loss between strips → Higher Q_f → more traps filled
 → charge sharing between
 strips increases → CCE loss
 decreases

Preliminary parametrization for $\Phi = 3e14 - 1.4e15 \text{ cm}^{-2}$

Type of defect	Level [eV]	$\sigma_{\rm e}$ [cm 2]	σ _h [cm ²]	Concentration [cm ⁻³]
Deep acceptor	$E_{\rm C}$ - 0.525	1e-14	1e-14	1.189*Φ + 6.454e13
Deep donor	$E_{V} + 0.48$	1e-14	1e-14	5.598*Ф - 3.959e14
Shallow acceptor	E_{C} - 0.40	8e-15	2e-14	14.417*Φ + 3.168e16

Backup: SiBT measured CCE loss between strips

Signal loss in-between strips (p=120 μ m, w/p~0.23)

No loss before irrad.; after irrad. ~30% loss; all technologies similar [Phase-2 Outer TK Sensors Review]

