Effect of Al₂O₃ passivation layer in irradiated n-on-p strip sensors 27th RD50 Workshop, 2-4 Dec. 2015 T. Peltola¹⁾, J. Härkönen¹⁾ ¹⁾Helsinki Institute of Physics, P.O. Box 64, FI-00014 University of Helsinki, Finland #### **Outline** - Motivation - **☐** Non-irradiated strip sensors: - Simulated alumina vs p-stop/p-spray - o R_{int}, C_{int} & V_{bd} - □ Accumulation of negative oxide charge: - MOS structure measurements & simulations - \square Al₂O₃ layer vs p-stop/p-spray in strip sensors: - Proton irradiated Φ=2e15 n_{eq}cm⁻²: - o CV/IV & C_{int} - CCE & CCE loss between strips - **☐** Summary & Conclusions ## Motivation #### Segmented n-on-p sensors: Challenges - \square Positive oxide charge \rightarrow need for isolation implantations \rightarrow requires more: - Mask levels (=price) - High temperature processing steps - Finer granularity increases local electric fields → lower breakdown voltage - ☐ More implants mean higher capacitances (=noise, lower rise time of signal) [1] J. Härkönen et al., 10th Hiroshima Symposium, 2015 #### **ALD** for radiation hard detectors #### ☐ Atomic Layer Deposition (ALD) - provides many potentially interesting material systems, e.g. high ϵ materials HfO₂, ZrO₂ etc. - With ALD one can tailor amount and type of oxide charge - ALD is pinhole free deposition → practically stress free - ALD is applicable on large surfaces - ALD is low temperature process, typically ~300° C ### ALD grown Al₂O₃: Electrical passivation dominates 200 Lifetime [µs] 10000 2000 4000 Lifetime [µs] 6000 8000 [1] 1000 800 # Non-irradiated strip sensors #### Simulation structures & parameters - □ 200 µm thick n-on-p (V_{fd}=30 V) 3-strip structure @ T=293 K - □ Pitch=55 μm, implant width=30 μm, MO=3 μm, DC-coupled - **Double p-stop:** width=2 μm, depth=1.5 μm, spacing=4 μm, $N_p = 5e16$ cm⁻³ - \square p-spray: depth=1.0 μ m, N_p=1e16 cm⁻³ - □ No isolation structures: SiO₂ & Al₂O₃ (alumina) passivation layers with opposite sign interface charge densities Q_f ## $Q_f = (0.5-1)e11 \text{ cm}^{-2}$: $R_{int} \& C_{int}$ Simulated R_{int} & C_{int} for typical values of Q_f in non-irradiated sensor: - ☐ non-isolated: strips shorted - □ p-spray: strips isolated, highest C_{int} values - □ p-stop: strips isolated, low C_{int} - \square 250 nm alumina: strips isolated, increased $Q_f \rightarrow$ more holes at the accumulation layer \rightarrow higher C_{int} ## **Q**_f=5e11 cm⁻²: R_{int} & C_{int} - ☐ non-isolated & p-spray: strips shorted - □ p-stop: strips isolated - □ 250 nm alumina: strips isolated, highest C_{int} @ V < 110 V - □ 52 nm alumina: 4 orders lower R_{int}, higher voltage needed for low C_{int}, no initial peak in C_{int} Thicker alumina layer → higher R_{int}, lower C_{int} P-stop vs thick alumina: essentially equal surface properties #### Breakdown voltage: p-stop vs alumina - □ p-stop: higher Q_f → more acceptor levels at p-stops are compensated by electrons → lower E-fields & higher V_{hd} (also lower R_{int}) - **□ 250 nm alumina:** higher $Q_f \rightarrow$ more holes at accumulation layer \rightarrow higher E-fields & lower V_{bd} ; $|V_{bd}| > 1$ kV @ highest Q_f values for non-irradiated sensor - □ 52 nm alumina: thinner layer results in ~300 V lower V_{bd} for each Q_f # Irradiated MOS & strip sensors ### **MOS-structure:** Measured & simulated V_{fb} - \square γ -irradiated MOS test structure with 40 nm thick Al_2O_3 layer - \square Shift of V_{fb} to higher forward bias voltage \rightarrow accumulation of negative oxide charge - ☐ Simulations of identical structure verify the observed behavior 500 nm Al 40 nm alumina 300 µm p-type Si \square Q_f with N_{it} : No effect to V_{fb} , affects only C offset #### **MOS-structure:** Extraction of Q_f - \square Simulation as an extension of measurement: find interface charge density Q_f corresponding to measured ΔV_{fb} - \Box Linear increase of ΔV_{fb} with $Q_f \rightarrow$ use slope & measured ΔV_{fb} ■ Resulting estimation of Q_f: significant accumulation of negative oxide charge density at Al₂O₃/Si interface ## Strips @ Φ=2e15 n_{eq}cm⁻²: LC - \square 3.88 cm*3.78 cm*298 μ m n-on-p 3-strip structure, Al_2O_3 : thickness=52 nm - □ Pitch=80 μm, implant width=10 μm, MO=2 μm, AC-coupled - As in measured sensor - □ Defects: non-uniform 3-level model, Φ=2e15 n_{eq} cm⁻² \rightarrow V_{fd} ≈0.8-1 kV (model validated only up to ~1.5e15 n_{eq}cm⁻²) - \Box Simulated & calculated LC normalized to T=-53.4° C by $\alpha(219.6 \text{ K}) = 1.35\text{e}-20 \text{ A/cm}$ - \square $Q_f = 1.8e12 \text{ cm}^{-2}$: alumina: Simulation converges only when interface donor traps added ($E_V + 0.6 \text{ eV}$) #### ☐ Alumina: CM affects the simulated LC (-4e10 cm⁻² max value for simulation @ 1.1 kV without N_{it}) #### Alumina: LC ratio of measured to simulated ## Strips @ Φ=2e15 n_{eq}cm⁻²: Simulated CV & C_{int} ☐ Corresponding CV to LC simulations on previous slide @ T=253 K compensated by acceptors - \square P-stop CV-curve normalized to alumina curve due to higher Q_f value \rightarrow higher charge in sensor - \square $Q_f = 1.8e12 \text{ cm}^{-2}$: Alumina C_{int} stays below p-stop values also at reduced N_{it} (no convergence below $N_{it} = 1.2e12 \text{ cm}^{-2}$ due to high E-fields) ## Strips @ Φ=2e15 n_{eq}cm⁻²: Measured CCE - □ ~300 µm thick n-on-p MCz-Si strip detector with ALD-grown Al₂O₃ insulator - ☐ Full charge recorded from the telescope's non-irradiated reference planes ~40 ADC ☐ Very high CCE at high V for given fluence & sensor thickness ## Strips @ Φ =2e15 n_{eq}cm⁻²: CCE & CCE(x) - □ **Defect model:** proton model at bulk, 3 level model at 2 µm from surface = 'non-unif. 3-level model' - ☐ Collected charge: average of CC from MIP injections at midgap & center of strip - \Box Q_f = 1.8e12 cm⁻²: - p-spray: strips shorted → defect model not sufficient at high Φ & Q_f - p-stop: strips isolated - **alumina:** Simulation converges only when interface donor traps added (E_V +0.6 eV) Simulations predict very low position dependence of CCE in real sensor with alumina insulator #### **Summary** - □ ALD-grown Al₂O₃ (alumina) field insulator for strip sensors: - Low T process < 400° C - High negative oxide charge after sintering - Strip sensors show comparable SNR with commercial detectors = good capacitive coupling - N-on-p detector made by simply one field insulator significantly reduces the complexity & price of sensor processing #### **Measurement & TCAD simulation study:** - **□** non-irradiated strip sensors: - **52 nm alumina:** $R_{int} \sim 500 \text{ M}\Omega \rightarrow \text{good strip isolation}$, C_{int} comparable to p-stop values, $V_{bd} > 1.5 \text{ kV}$ for expected Q_f values - \square γ -irradiated MOS structure with 40 nm Al₂O₃: - Measurement & simulation results suggest significant accumulation of negative oxide charge - □ Proton irradiated strip sensor with 52 nm alumina: - High E-fields require implementation of N_{it} to model measured V with realistic Q_f values \rightarrow with N_{it} very low C_{int} - High measured CCE at 1.1 kV possibly due to CM → simulations predict very low position dependence of CCE in real sensor #### **Backup:** Publications on ALD - Putkonen, M., Niinistö, J., Kukli, K., Sajavaara, T., Karppinen, M., Yamauchi, H., and Niinistö, L., ZrO₂ thin films grown on silicon substrates by atomic layer deposition with Cp₂Zr(CH₃)₂ and water as precursors, Chemical Vapor Deposition 9 (2003) 207-212. - Niinistö, J., Putkonen, M., Niinistö, L., Kukli, K., Ritala, M., and Leskelä, M., Structural and dielectric properties of thin ZrO₂ films on silicon grown by atomic layer deposition from cyclopentadienyl precursor, Journal of Applied Physics 95 (2004) 84-91. - Niinistö, J., Rahtu, A., Putkonen, M., Ritala, M., Leskelä, M., and Niinistö, L., In situ quadrupole mass spectrometry study of atomic-layer deposition of ZrO₂ using Cp₂Zr(CH₃)₂ and water, Langmuir 21 (2005) 7321-7325. - Niinistö, J., Putkonen, M., Niinistö, L., Stoll, S. L., Kukli, K., Sajavaara, T., Ritala, M., and Leskelä, M., Controlled growth of HfO₂ thin films by atomic layer deposition from cyclopentadienyl-type precursor and water, Journal of Materials Chemistry 15 (2005) 2271-2275. - Niinistö, J., Putkonen, M., Niinistö, L., Arstila, K., Sajavaara, T., Lu, J., Kukli, K., Ritala, M., and Leskelä, M., HfO₂ films grown by ALD using cyclopentadienyl-type precursors and H₂O or O₃ as oxygen source, Journal of The Electrochemical Society 153 (2006) F39-F45. - Niinistö, J., Putkonen, M., and Niinistö, L., Processing of Y₂O₃ thin films by atomic layer deposition from cyclopentadienyl-type compounds and water as precursors, Chemistry of Materials 16 (2004) 2953-2958. - Niinistö, J., Petrova, N., Putkonen, M., Sajavaara, T., Arstila, K., and Niinistö L., Gadolinium oxide thin films by atomic layer deposition, Journal of Crystal Growth 285 (2005) 191-200. - 8. Päiväsaari, J., Niinistö, J., Arstila, K., Kukli, K., Putkonen, M., and Niinistö, L., High growth rate of erbium oxide thin films in atomic layer deposition from (CpMe)₃Er and water precursors, Chemical Vapor Deposition 11 (2005) 415-419. - Myllymäki, P., Nieminen, M., Niinistö, J., Putkonen, M., Kukli, K., and Niinistö, L., High-permittivity YScO₃ thin films by atomic layer deposition using two precursor approaches, Journal of Materials Chemistry 16 (2006) 563-567. #### **Back-up:** Measured & simulated CCE(x) #### **Test beam measurement:** - Strips isolated - CCE loss between strips ~30% Interpretation: Irradiation produces non-uniform distribution of shallow traps close to surface → greater drift distance, higher trapping of carriers [T. Peltola, JINST 9 (2014) C12010] □ Traps remove both interface & signal electrons: better radiation induced strip isolation → higher CCE loss between strips → Higher Q_f → more traps filled → charge sharing between strips increases → CCE loss decreases Preliminary parametrization for $\Phi = 3e14 - 1.4e15 \text{ cm}^{-2}$ | Type of defect | Level
[eV] | $\sigma_{\rm e}$ [cm 2] | σ _h [cm ²] | Concentration
[cm ⁻³] | |------------------|----------------------|-----------------------------|--|--------------------------------------| | Deep acceptor | $E_{\rm C}$ - 0.525 | 1e-14 | 1e-14 | 1.189*Φ + 6.454e13 | | Deep donor | $E_{V} + 0.48$ | 1e-14 | 1e-14 | 5.598*Ф - 3.959e14 | | Shallow acceptor | E_{C} - 0.40 | 8e-15 | 2e-14 | 14.417*Φ + 3.168e16 | #### Backup: SiBT measured CCE loss between strips Signal loss in-between strips (p=120 μ m, w/p~0.23) #### No loss before irrad.; after irrad. ~30% loss; all technologies similar [Phase-2 Outer TK Sensors Review]