Sensor Vendor Initiative L. Spiegel, FNAL Based on recent presentation by U. Heintz in the CMS Sensor forum and recent TCAD simulations from Ron Lipton

US Sensor Initiative

- Collaborative effort of US National labs with Tezzaron/ Novati to develop wafers for potential use in HEP experiments.
 - Developed under framework of a US DOE Small Business Innovation Research (SBIR) grant
- In the first phase Novati produced using 200 mm FZ silicon from BNL
 - Four 725 µm p-type wafers
 - 3 with p-stop + p-spray
 - 1 with p-stop only
 - Two p-type wafers thinned to 500 µm after front-side processing
 - 1 with p-stop + p-spray
 - 1 with p-stop only (broke during processing)

US CMS Outer Tracker Sensor Group

- Brown University
 - U. Heintz, M. Narain
 - Sensor Qualification
 - Process Qualification
 - Irradiation and post-irradiation characterization
 - Neutron irradiation at RI Nuclear Science Center
 - Proton irradiation at Los Alamos National Lab
- Fermilab
 - A. Canepa, R. Lipton, L. Spiegel
 - Irradiation and post-irradiation characterization
 - Proton irradiation with future facility based on FNAL Linac
- University of Rochester
 - R. Demina, S. Korjenevski
 - Sensor Qualification
 - Process Qualification

Characteristics (500 µm wafer)

Parameter	MD	LD
Depletion voltage V_{dep}	351 V	341 V
Capacitance C	6 pF	23 pF
Thickness d	449 µm	450 µm
Effective doping concentration $_{Neff}$	$2.3x10^{12}/cm^3$	$2.2x10^{12}/cm^3$
Resistivity p	5.7 kΩcm	6.5 kΩcm

The oxide thickness is ≈1µm

Test results

IV measurements from Brown University. Similar results observed at FNAL and Rochester.

Worsening GR breakdown for p-stop + p-spray

Guard Ring current (A)

More stable breakdown for p-stop only

Guard Ring current (A)

Guard ring breakdown phenomenon

- Possible causes
 - Mixing p-spray and p-stop isolation?
 - Use of p-stops between guard rings?
 - Too high doping concentration for p-stop material?
 - Lack of significant metal "overhang"?
- Ron Lipton (FNAL) has made a number of TCAD simulations to try to understand the phenomenon.
 - Next few slides
 - Additional studies from Julie Segal (SLAC)
- Several guard ring structures will be tried in the next Novati submission.

Two ring structure

TCAD studies done for 2-ring structure with the inner ring grounded. Both p-stop+p-spray and p-stop only variations explored.

SIMS measurements compared with Silvaco results.

The measured p-stop implant density is high (about 1E18).

Variants studied

Electric fields

Effect of p-spray

one p-stop + p-spray

p-stops between rings No p-spray

Comparison with HPK design

p-stops between rings No p-stop

The HPK* design does not have pstops between ntype guard rings, but does have a significant (50µm) metal overhang

Leakage current dependence

Changes for the second Novati submission

- New materials
 - 2 FZ wafers thinned to 500 microns
 - 4 SOI wafers with 200 µm FZ thickness
- CMS MaPSA strip and lite structures
- Several guard ring variations
- No p-spray!
- Two p-stop doping variants
 - 1E17 and 1E16

FZ silicon

Handle wafer

Second Novati submission layout

Guard ring designs for second submission

Summary

- Expect another 6 wafers from Tezzaron/Novati by the end of January.
- The main goal is to produce thin sensors.
- Some modifications to the design and processing; in particular a number of guard ring options.
- Tezzaron/Novati will apply for a two-year <u>phase 2</u>
 SBIR grant with the idea of producing prototype sensors.
 - For both the CMS Tracker and HGC

Backup

Second submission specs

Part Number	FERM Si	Si 001 200mm, Customer Part: FEI	RM SiSi 001 200m Customer Fermilab	
Category		Parameter	Specification	Measurement Method
OverallWafer	1.0	Diameter	200.00 +/- 0.50 mm	
	2.0	Notch Direction	{110} +/- 1 degree	Wafer Vendor
	3.0	Notch or Flat	Notched	Wafer Vendor
	4.0	Secondary Flat Orientation	none	
	5.0	Secondary Flat Length	none	Wafer Vendor
	6.0	Overall Thickness	725.00 +/- 12.00 μm	ADE, 100%
	7.0	Total Thickness Variation (TTV)	<5.00um	ADE 100% to ASTM F534
	8.0	Bow	<80.00μm	ADE to ASTM F534, 20%
	9.0	Warp	<80.00μm	ADE to ASTM F657, 20%
	10.0	Edge Chips	0	Bright Light, 100% (note 2)
	11.0	Edge Exclusion	5mm	
HandleSilicon	12.0	Handle Growth Method	CZ	Wafer Vendor
	13.0	Handle Orientation	{100} +/- 1 degree	Wafer Vendor
	14.0	Handle Thickness	525.00 +/- 10.00 μm	ADE, 100%
	15.0	Handle Doping Type	N	Wafer Vendor
	16.0	Handle Dopant	Any	Wafer Vendor
	17.0	Handle Resistivity	<0.1 Ohm-cm	Wafer Vendor
	18.0	Backside Finish	Polished	Wafer Vendor
BuriedOxide	19.0	Oxide Type	NONE	
2 2 2 2 2 2 2 2 2 2	20.0	Device Growth Method	FZ	Wafer Vendor
	21.0	Device Orientation	{100} +/- 1 degree	Wafer Vendor
	22.0	Nominal Thickness	200.00 +/- 2.00 μm	Filmetrics, 100% 9-Pt (note3)
	23.0	Distance to device silicon edge from wafer edge	<= 2mm	Typical by Process
	24.0	Device Doping Type	N	Wafer Vendor
	25.0	Device Dopant	Phosphorous	Wafer Vendor
	26.0	Device Resistivity	>5000 Ohm-cm	Wafer Vendor
	27.0	Voids	none	Wafer Vendor
	28.0	Scratches	0	Bright Light, 100% (note 2)
	29.0	Haze	none	Bright Light, 100% (note 2)

SIMS measurements (Evans)

