27th RD50 Workshop

TCAD simulations of LGAD devices

M. Bomben - LPNHE & UPD, Paris

Outline

- Simulated structure & doping profile
- CV & Electric field
- Simulation of alpha particles hitting from the backside
- Simulation of MIPs hitting from the frontside
- Comments & conclusion

Simulated structure & doping profile

- 2D simulation of a 200 μm thick n-on-p diode, 150 μm wide
- Bulk doping conc. = $1x10^{12}$ /cm³
- 2 versions studied: with and without multiplication implant
- Profile from real data*
- Peak @ 1μm
- Plateau 0.5 μm wide

* Profile provided by H. Sadrozinski (from CV on a low-gain diode)

The 2D simulated structure

Depletion voltage, reference vs LGAD

Electric field – mult. zone

Electric field – bulk

Alpha's simulations

- Alpha impinging from the back
 - Range: 5 μm
 - Energy \sim 1 MIP in 200 μ m
- 200 μm thick devices
- $V_{bias} = 50, 100, 150 \& 200 V$
- T = from -35° C to +20° C
- Observables: signal, electric field and gain

Signal, V = 50 V

Signal, V = 100 V

Signal, V = 150 V

Signal, V = 150 V

Elec. Conc. – 150 V, 500 ps after particle strike

Hole Conc. – 150 V, 500 ps after particle strike

Elec. Conc. – 150 V, 1 ns after particle strike

Hole Conc. – 150 V, 1 ns after particle strike

Elec. Conc. – 150 V, 2 ns after particle strike

Hole Conc. – 150 V, 2 ns after particle strike

Signal, V = 150 V

Signal, V = 200 V

LGAD vs reference – 200 V

LGAD vs reference – 200 V - zoom

Charge: comparison

Gain for Fluence = 0

Gain vs temperature

MIPs simulations

- MIP impinging from the front
- 50, 100 & 200 μm thick devices
- $V_{bias} = 200 \& 500 V$
- $\Phi = 0$, 1×10^{15} , 3×10^{15} & 1×10^{16}
 - Model: Moscatelli et al. 2015 NSS 2015
 - and Passeri et al. 2015 Nucl. Instr. Meth. A (in press)
 - Bulk damage only (N.B. no acceptor removal, only trapping)
- Observables: signal, IV, electric field and gain

Signal vs time, different thicknesses – 200 V

Signal vs time, different thicknesses – 200 V

Signal vs time, different thicknesses – 200 V

Signal vs time, different thicknesses – 500V

Signal vs time, $w = 50 \mu m$, un-irr. -500 V

No breakdown in thin un-irr. till 1000 V

Break down voltage summary for irr. LGAD

Φ[neq/cm²] w[μm]	1x10 ¹⁵	3x10 ¹⁵	1x10 ¹⁶
50	450	450	450
100	> 500	900	900
200	> 500	> 1000	> 1000

Signal of irr. samples – $\Phi = 1x10^{15}$

Signal of irr. samples – Φ = 1x10¹⁵

Simulation of irr. samples – $\Phi = 1x10^{15}$

Simulation of irr. samples – $\Phi = 3x10^{15}$

Simulation of irr. samples – $\Phi = 3x10^{15}$

Simulation of irr. samples – $\Phi = 1x10^{16}$

Simulation of irr. samples – $\Phi = 1x10^{16}$

Gain vs different thicknesses – 200 V

Gain = charge normalised to a non-LGAD device at the same fluence and voltage

Gain vs different thicknesses – 500 V

Gain = charge normalised to a non-LGAD device at the same fluence and voltage

Electric field for $\Phi = 1 \times 10^{15}$

Electric field ratio

Electric field normalized to the reference detector

Electric field ratio

Electric field normalized to the reference detector

Conclusions & outlook

- Signal properties in LGAD have been studied
 - Both alpha from backside and MIPs
- Alpha studies show that the holes are multiplied
 - and are slowly collected (as expected)
- Colder device is faster (expected) and gives rise to more charge
 - Reason: impact ionization is more effective (longer mean free path)
- MIP studies confirms that signal "takes" longer for LGAD
 - But response at t=0 is the same as for non-LGAD (expected)
 - Hence: the fe will make the difference for timing
- Lower gain after irradiation could be apparent: an impoertant difference could be linked to the electric field strength
- Gain for w = 100 μ m goes from 4 to 1.4 from Φ =0 to Φ =1x10¹⁶ (500V)
- Next: new doping profiles, more bias voltages, surface damage effects

Backup

More bias points (I)

Same horizontal scale for all

More bias points (II)

As before: colder means faster... and more signal too?

Summary plot for T = 20° C

Summary plot for $T = -20^{\circ} C$

"Temperature" gain

Passeri et al. 2015

Modeling of radiation damage effects in silicon detectors at high fluences HL-LHC with Sentaurus TCAD

D. Passeri a,b,*, F. Moscatelli c,b, A. Morozzi a,b, G.M. Bilei b

Table 1 Parameters for fluences up to 7×10^{15} n/cm².

Defect	E (eV)	$\sigma_e (\mathrm{cm}^{-2})$	σ_n (cm ⁻²)	η
Acceptor Acceptor Donor	$E_c - 0.42$ $E_c - 0.46$ $E_v + 0.36$	1.00×10^{-15} 7.00×10^{-15} 3.23×10^{-13}	1.00×10^{-14} 7.00×10^{-14} 3.23×10^{-14}	1.6 0.9 0.9

Table 2 Parameters for fluences within $7 \times 10^{15} \text{ n/cm}^2$ and $2.2 \times 10^{16} \text{ n/cm}^2$.

Defect	E (eV)	$\sigma_e (\mathrm{cm}^{-2})$	σ_n (cm ⁻²)	η
Acceptor Acceptor Donor	$E_c - 0.42$ $E_c - 0.46$ $E_v + 0.36$	1.00×10^{-15} 3.00×10^{-15} 3.23×10^{-13}	1.00×10^{-14} 3.00×10^{-14} 3.23×10^{-14}	1.6 0.9 0.9

Breakdown in thin irr. LGAD and ref.

Signal vs time, different thicknesses

Breakdown in thin irr. LGAD and ref.

Breakdown in thin irr. LGAD and ref.

Simulation of irr. samples – $\Phi = 3x10^{15}$

Simulation of irr. samples – $\Phi = 1x10^{16}$

Ratio of electric field – LGAD only

Ratio of electric field – LGAD only

Electric field for all fluences

Electric field for all fluences

Electric field ratio

Electric field normalized to the reference detector

Electric field ratio

Electric field normalized to the reference detector

