<u>Geetika Jain</u>, Ranjeet Dalal, Ashutosh Bhardwaj, Kirti Ranjan 27th RD50 Workshop (CERN) 02 to 04 December, 2015 ### Outline - 1. Pixel geometries & their parameters - 2. Radiation damage model - 3. Design optimization through electric field plots - 4. Charge collection efficiency - 5. Initiation of 3D Simulation! - 6. Summary # 8 Pixel Designs! Pitch = $50\mu m$ Pitch = $25\mu m$ # 8 Pixel Designs! | | | Structure | Pitch
p (um) | Im Width
w (um) | Ratio
w/p | |---------------|--------|-----------|-----------------|--------------------|--------------| | | | | | | | | | | 1 | 25 | 10 | 0.4 | | | PSPRAY | 2 | 25 | 15 | 0.6 | | | | 3 | 50 | 30 | 0.6 | | \rightarrow | | 4 | 50 | 40 | 0.8 | | | | | | | | | | | 5 | 25 | 5 | 0.2 | | \rightarrow | PSTOP | 6 | 25 | 10 | 0.4 | | | | 7 | 50 | 23 | 0.46 | | | | 8 | 50 | 30 | 0.6 | ### Pixel Structure & Parameters **2D Net Doping Profile:** Structure 7, MO=4μm, Npst=1e16cm⁻³, dpst=1μm, d=200μm # Parameters from the Pixel Upgrade Group - N-in-P type - Al thickness = 0.55 μ m, DC contact through Vias - Gate SiO_2 thickness = 0.25 μ m, Field SiO_2 thickness = 0.70 μ m - Bulk doping concentration N_b = 3e12 cm⁻³ - Implant doping : conc. N_{im} = 1e19 cm⁻³, depth D_{im} = 1.5 μ m, type = gaussian, lateral expansion = 0.5 μ m - Temperature = 293 K (non-irr), 253 K (irr) - Qf = 1e11 for non-irr, 12e11 for 5e14 n_{eq}/cm^2 , 2e12 for all fluence >1e15 n_{eq}/cm^2 - All plots @ external bias of 500 V, unless specified - Horizontal cutline @ 0.9 μm for non-irr & irr structures. ## Radiation Damage Model - I # Non-Irradiated = QF + 2 N_{it} traps # Irradiated = 2 bulk traps + QF + 2 N_{it} traps **Bulk Traps** | Trap Type | Energy Level (eV) | Density (cm ⁻³) | σ _e (cm ⁻²) | σ _h (cm ⁻²) | |-----------|-----------------------|-----------------------------|------------------------------------|------------------------------------| | Acceptor | E _C - 0.51 | 4хф | 2.0 x 10 ⁻¹⁴ | 2.6 x 10 ⁻¹⁴ | | Donor | E _V + 0.48 | Зхф | 2.0 x 10 ⁻¹⁴ | 2.0 x 10 ⁻¹⁴ | QF | Irradiation Fluence, φ (n _{eq} .cm ⁻²) | QF Range (cm ⁻²) | |---|---| | 0 | 5.0 x 10 ¹⁰ to 5.0 x 10 ¹¹ | | 1.0 x 10 ¹⁴ | 1.0 x 10 ¹¹ to 8.0 x 10 ¹¹ | | 5.0 x 10 ¹⁴ | 5.0 x 10 ¹¹ to 12.0 x 10 ¹¹ | | 10.0 x 10 ¹⁴ | 8.0 x 10 ¹¹ to 20.0 x 10 ¹¹ | **Interface Traps** | Trap Type | Energy Level (eV) | Density (cm ⁻³) | σ _e (cm ⁻²) | σ _h (cm ⁻²) | |-----------|-----------------------|-----------------------------|------------------------------------|------------------------------------| | Acceptor | E _C - 0.60 | 0.6 x QF | 0.1 x 10 ⁻¹⁴ | 0.1 x 10 ⁻¹⁴ | | Acceptor | E _c - 0.39 | 0.4 x QF | 0.1 x 10 ⁻¹⁴ | 0.1 x 10 ⁻¹⁴ | ^{*} R. Dalal et al., Simulation of Irradiated Si Detectors, proceedings of The 23rd International Workshop on Vertex Detectors, PoS(Vertex2014)030 (2014) # Radiation Damage Model - II IV Characteristics: 1X1X200 μm³ Pad Diode @ 253 K ### **Simulated & Calculated Comparison** - ☐ The model is well verified upto 2e15 neq/cm² fluence and gives correct values of current, full depletion voltage & charge collection efficiency in comparison to the measurements! - ☐ However, measurements are required to further verify the model for higher fluence range. ### 2D Electric Field Profiles @ 500V Fluence=0 neq/cm2 Fluence=1e15 neq/cm2 $[\]square$ Max E.Field is at a cutline of 0.9 μ m, at the implant curvature. [☐] For irradiated pixels, E.Field is not concentrated, but has a spread, unlike non-irradiated pixel! ^{*} Structure4, MO=0μm, Npsp=1e15cm⁻³, dpsp=1μm, d=150μm, fluence=1e15 neq/cm2 ### Max. E. Field VS Fluence @ 500V Pspray Geometries: MO=0μm, Npsp=1e15cm⁻³, dpsp=1μm, d=150μm **MO Effect:** Structure 2, Npsp=1e15cm⁻³, dpsp=1μm, d=150μm - ☐ Structure 4 shows the least rise in the critical Efield, among all the geometries. - ☐ Metal Overhang is effective in reducing the peak electric field in the case of non-irradiated pixel only where the E.field is shifted towards the metal overhangs. ### 1D E. Field & Electron Conc. @ 500V **1D E.Field Profile:** Structure 4, MO=0μm, Npsp=1e15cm⁻³, dpsp=1μm, d=150μm, Cutline=0.9μm e concentration @ implant & @ pspray: Structure 4, MO=0μm, Npsp=1e15cm⁻³, dpsp=1μm, d=150μm, Cutline=0.1μm - \square Peak E.field for 1e15 n_{eq}/cm^2 irradiated pixel is lower than non-irradiated pixel bcz of compensation by increase in field by the pspray. - ☐ Isolation is provided through pspray! # Design Optimization #### **Best Pstop Geometry:** Structure 6 #### **Best Pspray Geometry:** Structure 4 | Structure
No. | Npst/npsp - dpsp/dpst - mo - d | |------------------|--------------------------------| | 1 | 1e16/1e15 - 1/1 - 0 - 150 | | 2 | 1e16/1e15 - 1/1 - 4 - 150 | | 3 | 1e16/1e15 - 0.5/0.5 - 0 - 150 | | 4 | 1e16/1e15 - 0.5/0.5 - 4 — 150 | | 5 | 5e15/5e15 - 1/1 - 0 - 150 | | 6 | 5e15/5e15 - 1/1 - 4 - 150 | | 7 | 1e16/1e15 - 1/1 - 0 - 200 | | 8 | 1e16/1e15 - 1/1 - 4 - 200 | | 9 | 1e16/1e15 - 0.5/0.5 - 0 - 200 | | 10 | 1e16/1e15 - 0.5/0.5 - 4 - 200 | | 11 | 5e15/5e15 - 1/1 - 0 - 200 | | 12 | 5e15/5e15 – 1 – 4 – 200 | - ☐ Significant reduction in E.field with use of MO for non-irradiated pixels. - ☐ Not much difference in the critical E.field rise for different parameters variation (specified above) for irradiated pixel structures! # Charge Collection Efficiency **DU TCT Circuit:** Simulation parameters CCE for IR fired at 2 positions: Structure6, MO=0 μ m, Npst=1e16cm⁻³, dpst=1 μ m, d=200 μ m, @ 200V ☐ Have not used Lstray and Cstray in the present simulations! ☐ CC at pixel-pixel / inter-pixel centre is less than that at pixel centre as expected. ### MO Effect on CCE @ 200V ### @ Inter-Pixel Centre ☐ Small effect of MO on CCE of irradiated pixel. ☐ No effect at all of MO on CCE! # 3D Simulations (Pixel Structure) **Structure:** Structure 4, MO=0μm, Npst=1e16cm⁻³, dpst=1μm, d=200μm #### **Leakage current characteristics** #### **Cutplane along middle of YZ plane** ### 2D VS 3D: IV Characteristics For a Pad Diode **2D Structure:** 1X200 μ m³ Pad Diode, with WIDTH = 1 μ m **3D Structure:** 1X1X200 μm³ Pad Diode Voltage (V) ### Summary #### **Electric Field Behaviour** - Maximum electric field lies at implant curvature, at 0.9 µm cutline below the oxide. - It is compensated by the isolation structure with irradiation to some extent. - However, for very high irradiation, the electric field at the implant curvature rises faster! - Structure 4 and Structure 6 are the best geometries for pspray and pstop respectively, of the other geometries. - A metal overhang of even 4 µm does not seem to redistribute the electric field. #### **Charge Collection Efficiency** - A slightly higher value of the isolation structures should provide very good isolation between the pixels. - CCE is lesser at the pixel-pixel centre than at the pixel centre, as expected. #### **3D Simulations** Initiated 3D simulations. #### **Future Plans** - Experimental results (CVIV, CCE) required for tuning the radiation model for higher irradiation. - CCE at higher voltages and for different parameters of structure 4 & 6. - 3D simulations of critical parameters. # Backup - I | | Design
No. | Pitch (p)
(μm) | lm Width
(w) (μm) | Metal Width
(μm) | Ratio
w/p | Iso Width
(μm) | Iso1-Iso2
Separation (μm) | lm-Iso Separation
(μm) | |--------|---------------|-------------------|----------------------|---------------------|--------------|-------------------|------------------------------|---------------------------| | | | | | | | | | | | | 1 | 25 | 10 | 10, 14 | 0.4 | 15 | 0 | 0 | | PSPRAY | 2 | 25 | 15 | 15, 19 | 0.6 | 10 | 0 | 0 | | | 3 | 50 | 30 | 30, 34 | 0.6 | 20 | 0 | 0 | | | 4 | 50 | 40 | 40, 44 | 0.8 | 10 | 0 | 0 | | | | | | | | | | | | | 5 | 25 | 5 | 5, 9 | 0.2 | 3 | 4 | 5 | | PSTOP | 6 | 25 | 10 | 10, 14 | 0.4 | 5 | 0 | 0 | | | 7 | 50 | 23 | 23, 27 | 0.46 | 5 | 5 | 6 | | | 8 | 50 | 30 | 30, 34 | 0.6 | 3 | 4 | 5 | ^{*} Im=implant * Iso=Isolation structure (pstop/pspray) # Backup - II **Pstop Structure 6** $MO = 4 \mu m$