

<u>Geetika Jain</u>, Ranjeet Dalal, Ashutosh Bhardwaj, Kirti Ranjan

27th RD50 Workshop (CERN) 02 to 04 December, 2015

Outline

- 1. Pixel geometries & their parameters
- 2. Radiation damage model
- 3. Design optimization through electric field plots
- 4. Charge collection efficiency
- 5. Initiation of 3D Simulation!
- 6. Summary

8 Pixel Designs!

Pitch = $50\mu m$ Pitch = $25\mu m$

8 Pixel Designs!

		Structure	Pitch p (um)	Im Width w (um)	Ratio w/p
		1	25	10	0.4
	PSPRAY	2	25	15	0.6
		3	50	30	0.6
\rightarrow		4	50	40	0.8
		5	25	5	0.2
\rightarrow	PSTOP	6	25	10	0.4
		7	50	23	0.46
		8	50	30	0.6

Pixel Structure & Parameters

2D Net Doping Profile: Structure 7, MO=4μm, Npst=1e16cm⁻³, dpst=1μm, d=200μm

Parameters from the Pixel Upgrade Group

- N-in-P type
- Al thickness = 0.55 μ m, DC contact through Vias
- Gate SiO_2 thickness = 0.25 μ m, Field SiO_2 thickness = 0.70 μ m
- Bulk doping concentration N_b = 3e12 cm⁻³
- Implant doping : conc. N_{im} = 1e19 cm⁻³, depth D_{im} = 1.5 μ m, type = gaussian, lateral expansion = 0.5 μ m
- Temperature = 293 K (non-irr), 253 K (irr)
- Qf = 1e11 for non-irr, 12e11 for 5e14 n_{eq}/cm^2 , 2e12 for all fluence >1e15 n_{eq}/cm^2
- All plots @ external bias of 500 V, unless specified
- Horizontal cutline @ 0.9 μm for non-irr & irr structures.

Radiation Damage Model - I

Non-Irradiated = QF + 2 N_{it} traps # Irradiated = 2 bulk traps + QF + 2 N_{it} traps

Bulk Traps

Trap Type	Energy Level (eV)	Density (cm ⁻³)	σ _e (cm ⁻²)	σ _h (cm ⁻²)
Acceptor	E _C - 0.51	4хф	2.0 x 10 ⁻¹⁴	2.6 x 10 ⁻¹⁴
Donor	E _V + 0.48	Зхф	2.0 x 10 ⁻¹⁴	2.0 x 10 ⁻¹⁴

QF

Irradiation Fluence, φ (n _{eq} .cm ⁻²)	QF Range (cm ⁻²)
0	5.0 x 10 ¹⁰ to 5.0 x 10 ¹¹
1.0 x 10 ¹⁴	1.0 x 10 ¹¹ to 8.0 x 10 ¹¹
5.0 x 10 ¹⁴	5.0 x 10 ¹¹ to 12.0 x 10 ¹¹
10.0 x 10 ¹⁴	8.0 x 10 ¹¹ to 20.0 x 10 ¹¹

Interface Traps

Trap Type	Energy Level (eV)	Density (cm ⁻³)	σ _e (cm ⁻²)	σ _h (cm ⁻²)
Acceptor	E _C - 0.60	0.6 x QF	0.1 x 10 ⁻¹⁴	0.1 x 10 ⁻¹⁴
Acceptor	E _c - 0.39	0.4 x QF	0.1 x 10 ⁻¹⁴	0.1 x 10 ⁻¹⁴

^{*} R. Dalal et al., Simulation of Irradiated Si Detectors, proceedings of The 23rd International Workshop on Vertex Detectors, PoS(Vertex2014)030 (2014)

Radiation Damage Model - II

IV Characteristics: 1X1X200 μm³ Pad

Diode @ 253 K

Simulated & Calculated Comparison

- ☐ The model is well verified upto 2e15 neq/cm² fluence and gives correct values of current, full depletion voltage & charge collection efficiency in comparison to the measurements!
- ☐ However, measurements are required to further verify the model for higher fluence range.

2D Electric Field Profiles @ 500V

Fluence=0 neq/cm2

Fluence=1e15 neq/cm2

 $[\]square$ Max E.Field is at a cutline of 0.9 μ m, at the implant curvature.

[☐] For irradiated pixels, E.Field is not concentrated, but has a spread, unlike non-irradiated pixel!

^{*} Structure4, MO=0μm, Npsp=1e15cm⁻³, dpsp=1μm, d=150μm, fluence=1e15 neq/cm2

Max. E. Field VS Fluence @ 500V

Pspray Geometries: MO=0μm, Npsp=1e15cm⁻³, dpsp=1μm, d=150μm

MO Effect: Structure 2, Npsp=1e15cm⁻³, dpsp=1μm, d=150μm

- ☐ Structure 4 shows the least rise in the critical Efield, among all the geometries.
- ☐ Metal Overhang is effective in reducing the peak electric field in the case of non-irradiated pixel only where the E.field is shifted towards the metal overhangs.

1D E. Field & Electron Conc. @ 500V

1D E.Field Profile: Structure 4, MO=0μm, Npsp=1e15cm⁻³, dpsp=1μm, d=150μm, Cutline=0.9μm

e concentration @ implant & @ pspray: Structure 4, MO=0μm, Npsp=1e15cm⁻³, dpsp=1μm, d=150μm, Cutline=0.1μm

- \square Peak E.field for 1e15 n_{eq}/cm^2 irradiated pixel is lower than non-irradiated pixel bcz of compensation by increase in field by the pspray.
- ☐ Isolation is provided through pspray!

Design Optimization

Best Pstop Geometry: Structure 6

Best Pspray Geometry: Structure 4

Structure No.	Npst/npsp - dpsp/dpst - mo - d
1	1e16/1e15 - 1/1 - 0 - 150
2	1e16/1e15 - 1/1 - 4 - 150
3	1e16/1e15 - 0.5/0.5 - 0 - 150
4	1e16/1e15 - 0.5/0.5 - 4 — 150
5	5e15/5e15 - 1/1 - 0 - 150
6	5e15/5e15 - 1/1 - 4 - 150
7	1e16/1e15 - 1/1 - 0 - 200
8	1e16/1e15 - 1/1 - 4 - 200
9	1e16/1e15 - 0.5/0.5 - 0 - 200
10	1e16/1e15 - 0.5/0.5 - 4 - 200
11	5e15/5e15 - 1/1 - 0 - 200
12	5e15/5e15 – 1 – 4 – 200

- ☐ Significant reduction in E.field with use of MO for non-irradiated pixels.
- ☐ Not much difference in the critical E.field rise for different parameters variation (specified above) for irradiated pixel structures!

Charge Collection Efficiency

DU TCT Circuit: Simulation parameters

CCE for IR fired at 2 positions: Structure6, MO=0 μ m, Npst=1e16cm⁻³, dpst=1 μ m, d=200 μ m, @ 200V

☐ Have not used Lstray and Cstray in the present simulations!

☐ CC at pixel-pixel / inter-pixel centre is less than that at pixel centre as expected.

MO Effect on CCE @ 200V

@ Inter-Pixel Centre

☐ Small effect of MO on CCE of irradiated pixel.

☐ No effect at all of MO on CCE!

3D Simulations (Pixel Structure)

Structure: Structure 4, MO=0μm, Npst=1e16cm⁻³, dpst=1μm, d=200μm

Leakage current characteristics

Cutplane along middle of YZ plane

2D VS 3D: IV Characteristics For a Pad Diode

2D Structure: 1X200 μ m³ Pad Diode, with WIDTH = 1 μ m

3D Structure: 1X1X200 μm³ Pad Diode

Voltage (V)

Summary

Electric Field Behaviour

- Maximum electric field lies at implant curvature, at 0.9 µm cutline below the oxide.
- It is compensated by the isolation structure with irradiation to some extent.
- However, for very high irradiation, the electric field at the implant curvature rises faster!
- Structure 4 and Structure 6 are the best geometries for pspray and pstop respectively, of the other geometries.
- A metal overhang of even 4 µm does not seem to redistribute the electric field.

Charge Collection Efficiency

- A slightly higher value of the isolation structures should provide very good isolation between the pixels.
- CCE is lesser at the pixel-pixel centre than at the pixel centre, as expected.

3D Simulations

Initiated 3D simulations.

Future Plans

- Experimental results (CVIV, CCE) required for tuning the radiation model for higher irradiation.
- CCE at higher voltages and for different parameters of structure 4 & 6.
- 3D simulations of critical parameters.

Backup - I

	Design No.	Pitch (p) (μm)	lm Width (w) (μm)	Metal Width (μm)	Ratio w/p	Iso Width (μm)	Iso1-Iso2 Separation (μm)	lm-Iso Separation (μm)
	1	25	10	10, 14	0.4	15	0	0
PSPRAY	2	25	15	15, 19	0.6	10	0	0
	3	50	30	30, 34	0.6	20	0	0
	4	50	40	40, 44	0.8	10	0	0
	5	25	5	5, 9	0.2	3	4	5
PSTOP	6	25	10	10, 14	0.4	5	0	0
	7	50	23	23, 27	0.46	5	5	6
	8	50	30	30, 34	0.6	3	4	5

^{*} Im=implant
* Iso=Isolation
structure

(pstop/pspray)

Backup - II

Pstop Structure 6

 $MO = 4 \mu m$

