

Power Dissipation Studies on n⁺-in-n Pixel Sensors

27th RD50 Workshop
December 2015

Andreas Gisen

Silke Altenheiner, Karola Dette, Sascha Dungs, Daniel Bryan, Claus Gößling, Bettina Hillringhaus, Reiner Klingenberg, Kevin Kröninger, Carolin Ratering, André Schorlemmer, Felix Wizemann

GEFÖRDERT VOM

The ATLAS pixel detector

LHC/HL-LHC roadmap (July 2015) technische universität dortmund

- 3-layer detector sensors: 10¹⁵ n_{eq}cm⁻², 250 μm
 - FE-I3: 400×50 μm²
- 4th layer (IBL) sensors: 5×10¹⁵ n_{eq}cm⁻², 200 μm
 - FE-I4: 250×50 µm²
- Inner Tracker (ITk) sensors: 2×10¹⁶ n_{eq}cm⁻², ≤150 μm
 - RD53 ASICs: 50×50 µm²

LHC/HL-LHC roadmap (July 2015) technische universität dortmund

- (3-layer detector sensors: 10¹⁵ n_{eq}cm⁻², 250 μm
 - FE-I3: 400×50 μm²
- 4th layer (IBL) sensors: 5×10^{15} n_{eq}cm⁻², 200 µm
 - FE-I4: 250×50 μm²
- Inner Tracker (ITk) sensors: 2×10¹⁶ n_{eq}cm⁻², ≤150 μm
 - RD53 ASICs: 50×50 µm²

Impact of Power dissipation

- Sensor leakage current rises with irradiation
- Limits detector operational capability
- Can be lowered by cooling
- Assumed on-sensor temperature in ATLAS-ITk: -25°C

- Sensor temperature depends on balance of power dissipation and cooling
 - Worst case: Thermal runaway
- Need for reliable values for power dissipation

Detailed study for n-in-n sensors

- 6 irradiated Single Chip Assemblies
- Thicknesses: 150, 200, 250 μm, each 2 times
- Fluence: 5x10¹⁵ n_{eq}cm⁻²
- Range: 0-1000 V
- Temperature: -10 to -40°C
- Repeated measurement of the same sensors

Lab setup for assemblies

- Placed on chiller cooled plate
- Additional cooling by chilled dry air
- Front-End not used nor powered
- Sensor temperature measured on FE side
- Looking for an effective scaling parameter considering this setup

Measurement approaches

- Current vs temperature
- Fixed voltage

- Current vs bias voltage
- Fixed temperature

$$I = A \cdot T^2 \exp\left(\frac{-E_{\rm g,eff}}{2k_B T}\right)$$

Determine scaling parameter

- Nearly constant with temperature
- $E_{q,eff} = 1.13 \text{ eV}$

$$E_{\mathrm{g,eff}} = -2k_B T \cdot \ln\left(\frac{I}{A \cdot T^2}\right)$$

- Value of scaling parameter depends on voltage
- $E_{q,eff} = 1.16 \text{ eV } (800 \text{ V})$
- $E_{g,eff} = 1.19 \text{ eV} (1000 \text{ V})$

∕7th RD50 Workshop

Apply on power dissipation

- Scaling possible for wide temperature range
 - e.g. 200 mW/cm² @ 1000V @ 255K
- Power dissipation as a function of voltage and temperature

- Repeat study with similar sensors but HL-LHC fluence
- Irradiation at Sandia National Lab Annular Core Research Reactor facility (SNL ACRR), Albuquerque, NM
- 3 thicknesses, each 2 times, 1.6x10¹⁶ n_{eq}cm⁻²
- At a bucket temperature of 150°C, reactor was stopped
- Temperature decreasing over 1,5h to 60°C

- Additional: Single Chip Assemblies
- Activity of Tantalum-182 (90 days after irradiation)
 - 4 kBq @5.5x10¹⁵ n_{eq}cm⁻²,
 - 11 kBq @1.6x10¹⁶ n_{eq}cm⁻²

Lab setup for bare sensors

- Cooling by climate chamber
- Pt1000 directly on sensor
 - Best achievable sensor temperature

- IV measurement done with probe heads
- FE-I3 SCs almost finished
- FE-I4 SCs no negligible amount of self-heating

Probe positioners

Sensors under weights

Results for n-in-n sensors

 No large deviations between thicknesses

- First result of newly irradiated sample
- Values are self-consistent
- Same order of magnitude
- Annealing?

Results for n-in-p sensors

- Several sensors from various vendors
- Thicknesses: 75, 100, 150, 200, 320 μm
- Fluences:
 2,4,5,6,10,13x10¹⁵ n_{eq}cm⁻²

Combined n-in-n & n-in-p results

- Comparison of data taken under the same conditions
- Good agreement for both types of bulk
- Thin sensors (100 μm) have lower power at high voltages
- Thinner sensors require lower voltages for same efficiency

$\Phi = 5 \times 10^{15}$	n _{eq} cm ⁻²
---------------------------	----------------------------------

Thickness [um]	Op. Vbias	Ileak(-25C) [uA/cm²]	Power [mW/cm²]
75	500	59	27
100	500	A. Macchiolo, ITk week, Sep 15	
150	600	50	35
200	700	65	45
320 🔷	800	96	77

Power vs fluence

- Power at fluences up to HL-LHC's fluence?
- Wide range of irradiated FE-I3 from previous studies:
 - Linear, quadratic, constant fit all feasible
 - Possible saturation of charge carrier generation
- Mean power dissipation area density of (126±8) mWcm-2

Power vs fluence

- Add new data point
- Lower than expected
 - Annealing!
 - Corresponds to ~many weeks @ room temperature
- Mean power dissipation area density of (126±8) mWcm-2

Power vs sensor area

- Most investigations executed with single chips
- Larger sized sensors in detector later
- All structures on a nonirradiated IBL prototype wafer (250µm)
- Power/area decreases with sensor size
- Similar results for irradiated sensors, but luck of dater for larger ones

Summary

- Effective leakage current temperature scaling possible for our setup under various conditions
 - Determination of power dissipation
- Estimates on power dissipation for ITk:
 - 126mW/cm² @-25°C & 800V on sensors similar to 3-layer ones
 - Reduced for thinner sensors (<150 μm)?
 - Reduced for larger sized sensors
 - Reduced by annealing