Remarks on the measurement of thermally stimulated current

Juozas Vaitkus, Gytis Braždžiūnas, Vytautas Rumbauskas

Institute of Applied Research, Vilnius University,
Vilnius, Lithuania

Everybody knows (1):

- The particles generates the electron and hole packages that channel the conductivity of the detector, and the signals are recorded.
- If the electrons and holes are extracted a maximal signal is obtained, but:
 - a part of e-h pairs recombine, and
 - a part can be captured in the traps therefore do not participate in the signal formation if their thermal excitation time constant s are longer than signal acquisition time.
- Therefore a knowledge about the traps is necessary for evaluation of material and detector ability for ionizing radiation detectors.

Everybody knows (2):

The parameters of traps can be investigated by:

- kinetics (growth and decay) of photoconductivity by excitation in extrinsic and intrinsic range;
- Transient capacitance of p-i-n junction (DLTS),
 - But this method is not available in the samples irradiated to high fluence
- Thermally stimulated conductivity
 - By linear temperature scan of earlier excited sample (TSC);
 - By linear temperature scan of response time constant (I-DLTS)

TSC

- Two methods at low T:
 - Injection of carriers by applying the forward bias, and measurement at
 - Reverse bias (extraction of carriers)
 - Zero bias depolarization current
 - Excitation by light and measurement at reverse bias (if the sample is p-i-n structure)
 - Two regimes in both cases:
 - By linear increasing T (recommended to measure at different velocity of temperature growth);
 - By linear increasing T up to a TSC peak, lowering the T, and cycle repeated (multiple-TSC)

Intermediate conclusion:

there are many ways to investigate traps by thermally stimulated effects, and all these models are well analyzed in the literature ...

- We, and not only we, use TSC for investigation of traps in irradiated Si, and the light Or the forward bias regime have been used.
- The results were different, but TSC was measured in different samples.
- We decided to measure it in the same sample ...

The modulation of the conductivity band bottom depends on the filling of deep levels:

As the measurement is performed by excitation and wait until free carriers will trap or recombine, the independent on temperatte current shows a filling up all traps.

Fz n-type 5E13, E = 10MeV U = -50 V

For more detail investigation we chose the neutron irradiated sample

Photoresponse spectrum

The main deep levels optical activation energy - appr. 0,7 eV, 0,9 eV, 1,05 eV As thermal activation energy are smaller, the strong electron-phonon interaction exists (i.e., recombination induced transforms can be observed)

HERA DLTS-System FT 1030

Hardware setup: PC, CTI-CRYOCRYOGENICS cryogenic system, CHAGCHUN NEW INDUSTRIES 1064 and 532 nm laser modules, Boonton 72B capacitance meter, Boonton bridge, LakeShore 336 Temperature Controller, Agilent 81107A pulse generator.

HERA DLTS

- Correlation DLTS (Tempscan, Periodwidthscan, Frequencyscan)
- Fourier DLTS (Direct Transient Analysis)
- Laplace DLTS (Direct Transient Analysis)
- Deconvolution HERA DLTS (Tempscan, Periodwidthscan)

I-DLTS

n(tau*¼h*N_C) →

Name = @d*1064_7M.ATA

= 2015.11.26

 $= 2.50E-01 \text{ cm}^2$

 $= 1.24E+16 \text{ cm}^{-3}$

= 500.00 ms

= -20.00 V

Comm = 1064 nm

= m7

= n-Si

ID

t_{Po} U_R

Type

1000/T [1/K] →

Measurement by a single and multiple heating TSC

TSC @ different bias

Instead of conclusions

- It is why in the title was written "Remarks"...
- The TSC is very attractive method, but it is necessary to perform systematic studies to find out where are the traps
- or why different filling gave different result
- And: during the detector working regime both carriers contribute ...

A part of this work is coherent with CERN RD50 collaboration. Thanks to Lithuanian Academy of Sciences grant No. CERN-CEC

THANK YOU FOR YOUR ATTENTION!

