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Everybody knows (1):

• The particles generates the electron and hole packages that 

chanhe the conductivity of the detector, and the signals are 

recorded.

• If the electrons and holes are extracted a maximal signal is 

obtained, but:

– a part of e-h pairs recombine, and 

– a part can be captured in the traps therefore do not participate in 

the signal formation if their thermal excitation time constant s 

are longer than signal acquisition time.

• Therefore a knowledge about the traps is necessary for 

evaluation of material and detector ability for ionizing 

radiation detectors.



Everybody knows (2):
The parameters of traps can be investigated by:

• kinetics (growth and decay) of photoconductivity by 

excitation in extrinsic and intrinsic range;

• Transient capacitance of p-i-n junction (DLTS),

– But this method is not available in the samples irradiated 

to high fluence

• Thermally stimulated conductivity

– By linear temperature scan of earlier excited sample 

(TSC);

– By linear temperature scan of response time constant    

(I-DLTS)



TSC

• Two methods  - at low T:

– Injection of carriers by applying the forward 

bias, and measurement at

• Reverse bias (extraction of carriers)

• Zero bias – depolarization current

– Excitation by light and measurement at 

reverse bias (if the sample is p-i-n structure)

– Two regimes in both cases:

• By linear increasing T (recommended to measure 

at different velocity of temperature growth);

• By linear increasing T up to a TSC peak, lowering 

the T, and cycle repeated (multiple-TSC)



Intermediate conclusion:
there are many ways to investigate traps by thermally stimulated 

effects, and all these models are well analyzed in the literature …

• We, and not only we, use TSC for investigation of traps in irradiated Si, 

and the light or the forward bias regime have been used.

• The results were different, but TSC was measured in different samples.

• We decided to measure it in the same sample … 
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The modulation of the conductivity band bottom depends 

on the filling of deep levels:
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As the measurement is performed by excitation and wait until free carriers will trap 

or recombine, the independent on temperatte current shows a filling up all traps.
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For more detail investigation we chose the neutron 

irradiated sample
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Photoresponse spectrum
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The main deep levels optical activation energy - appr. 0,7 eV, 0,9 eV, 1,05 eV

As thermal activation energy are smaller, the strong electron-phonon interaction exists
(i.e., recombination induced transforms can be observed)



HERA DLTS-System FT 1030

Hardware setup: PC, CTI-CRYOCRYOGENICS cryogenic system, CHAGCHUN NEW
INDUSTRIES 1064 and 532 nm laser modules, Boonton 72B capacitance meter, Boonton bridge,
LakeShore 336 Temperature Controller, Agilent 81107A pulse generator.



HERA DLTS
• Correlation DLTS (Tempscan, Periodwidthscan, Frequencyscan)

• Fourier DLTS (Direct Transient Analysis)

• Laplace DLTS (Direct Transient Analysis)

• Deconvolution HERA DLTS (Tempscan , Periodwidthscan)



I-DLTS
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Measurement by a single and multiple heating 

TSC
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TSC @ different bias

0,01 0,02 0,03

1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

593 meV

287 meV

 bias 100 V

 bias  50 V

I,
 A

1/T, 1/K

673 meV

644 meV



Instead of conclusions

• It is why in the title was written “Remarks”…

• The TSC is very attractive method, but it is 

necessary to perform systematic studies to 

find out where are the traps 

• or why different filling gave different result

• And: during the detector working regime 

both carriers contribute …
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