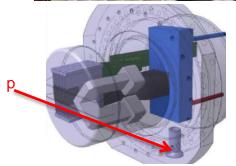
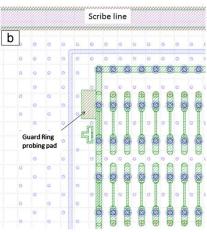
Radiation hardness of 3D pixel detectors up to $2e16 n_{eq}/cm^2$

Emanuele Cavallaro, Fabian Förster, Sebastian Grinstein, <u>Jörn Lange</u>, Iván López Paz, David Vázquez Furelos

IFAE Barcelona

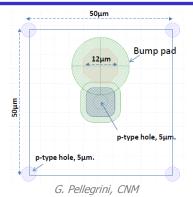
27th RD50 Workshop, CERN, 2-4 Dec 2015





Today's 3D Pixel Detectors

- ATLAS IBL
 - 25% 3D detectors
 - Installed and running!
 - \rightarrow 3D in action
- ATLAS Forward Proton (AFP)
 - Successful 3D sensor qualification
 - 3D module production on-going at IFAE
 - To be installed early next year
- Properties of IBL/AFP 3D pixel detectors
 - 230 µm thick sensors by CNM and FBK
 - FEI4s: 50x250 μm, 67 μm inter-el. spacing
 - FEI3s (tests): 50x400 μm, 71 μm inter-el. spacing
 - Radiation hardness up to 5e15 n_{ea}/cm² established
 - >97% hit efficiency above 160 V (conservative! In fact for many devices already from 120 V)
 - Low power dissipation: 10-15 mW/cm² at T=-15 C


New Developments for HL-LHC

- High-Luminosity LHC (HL-LHC) upgrade 2024
 - → increased occupancy
 - \rightarrow unprecedented radiation levels (1-2x10¹⁶ n_{eq}/cm^2 innermost pixels)
- Development of new pixel sensors and front-end (RD53)
 - Reduced pixel size: 50x50 µm² or 25x100 µm²
 - Reduced 3D inter-electrode distance
 - Possibly reduced thickness (100-150 µm)
 - Reduced threshold ~1000e (in-time)
- Strategy for 3D HL-LHC R&D
 - New generation of 3D productions under way
 - But takes time (~1 year)
 - First small-pixel run almost finished now → See Giulio's talk
 - First very thin (50 µm) single-sided CNM run ready → See Giulio's talk
 - Explore the limits of existing 3D technology and devices (IBL/AFP generation)
 - Neutron irradiated FEI3 up to 2e16 n_{eq}/cm²
 - \rightarrow this talk
 - Proton irradiated FEI4 up to ~1e16 n_{eq}/cm²

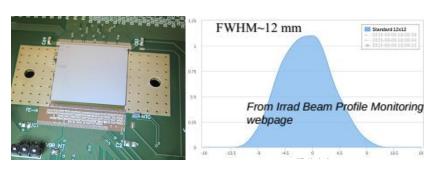
→ next talk (I. Lopez)

→ I. Lopez, 26th RD50 Workshop, Santander, 2015

Efficiency of 50 µm pitch under high angle

Layout	50x50 1E	25x1001E	25x100 2E
El. Dist. L	35 µm	52 µm	28 µm

cf. FE-I4: L=67 µm


HL-LHC Studies: Irradiation Campaigns

Thanks to Igor Mandic, Vladimir Cindro

PS IRRAD 23 GeV p (Nov 2014 + Fall 2015)

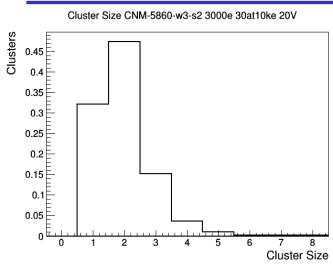
- FEI4 3D pixel detectors
- Non-uniform (12 mm FWHM beam)
 → difficult for IV/power dissipation studies
- In 2014 reached 9e15 n_{eq}/cm²
 - Beam tests successful → see I. Lopez' talk
 - Now further irradiation to 2e16 n_{eq}/cm² finished
 - Radiation hardness of FEI4 after p irradiation above 1e16 n_{ea}/cm² not clear
- → make complementary studies with neutron irradiation for more uniform irradiation and to reach higher fluence

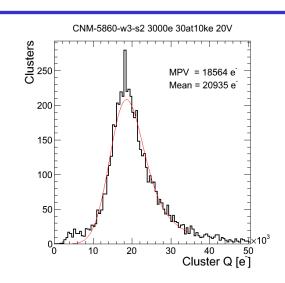
Thanks to Federico Rayotti for irradiation!

- JSI Ljubljana n (May 2015)
 - FEI4 has problem of Ta activation

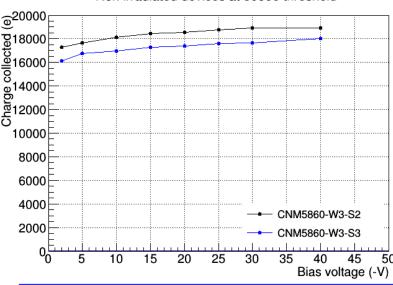
 → take FEI3
 - Also have plenty FEI3s from CNM IBL wafers with great V_{BD} of 300 V
 - Uniform irradiation good for IV/power dissipation study
 - Fluences: 5e15, 1e16 (2x), 1.5e16 (2x), 2e16 n_{eq}/cm²
 - Assembled at IFAE (bump- and wire-bond + gluing)

First time 3D pixel detectors irradiated to HL-LHC fluences!

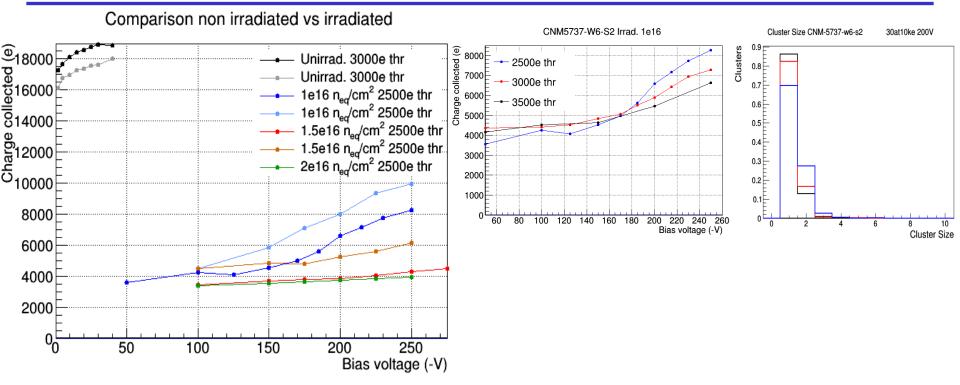

FEI3 Charge Collection Studies


- Sr 90 source (not collimated)
- External scintillator trigger
- USBpix readout system
- Tuning
 - Relatively high threshold of FEI3: compared 2.5, 3 and 3.5 ke
 - 30 ToT at 10 ke
 - Performed ToT to Q calibration with FEI3 charge injection circuit
- Measurement temperature
 - Climate chamber set to -30 C
 - On-sensor T~-25 C: benchmark T for ATLAS ITk (see slides later)

Measurements by D. Vazquez



Charge Collection Studies – Unirradiated



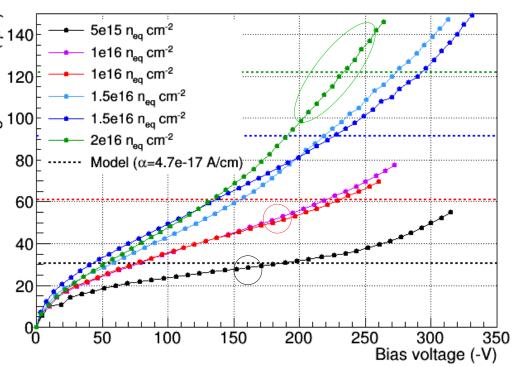
Non irradiated devices at 3000e threshold

- Cluster size ~2 (not collimated)
- Landau*Gauss shape
- MPV plateau ~18 ke
 - In agreement with expected 17 ke (for 73 e-h pairs/μm and 230 μm)

Charge Collection Studies – Irradiated

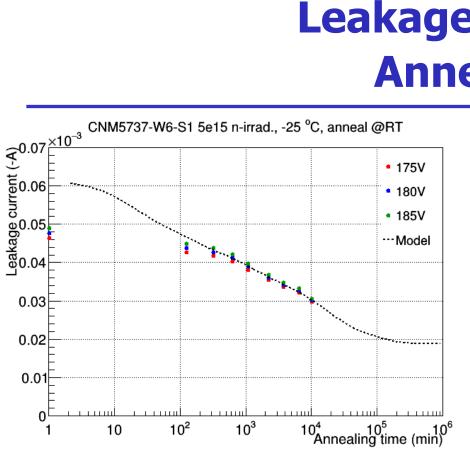
- Threshold dependence: Charge and hit loss at higher thresholds
- Even with FEI3 threshold of 2.5 ke and 71 μ m 3D inter-electrode distance: Q~4 ke (for 230 μ m) and CCE~21% at 200 V for 2e16 n_{eq} /cm²!
 - Cf. to strips (no threshold, 57 μm el. dist.): CCE~30-35% at 200 V [4,5]
- Expect improvement for RD53 threshold of 1 ke and 35 μm 3D inter-electrode distance
 - Partly compensated for total charge if going thinner for normal incidence

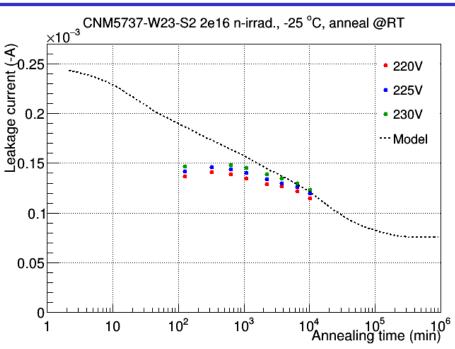
FEI3 Leakage Current: Fluence Dependence


- Climate chamber set to -25 C (chip off)
- Annealing to 7d at room temperature
- Fluence dependence as expected

Benchmark T for ATLAS ITk

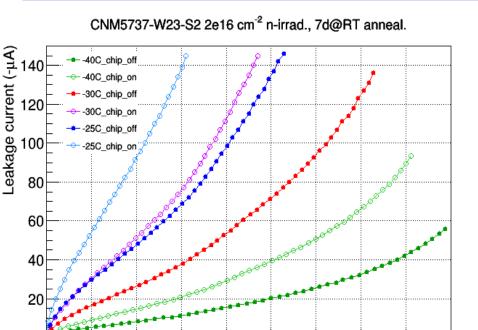
- Devices at same fluence agree reasonably
- Definition of operational V_{op}
 - Point where hit efficiency >97%
 - $5e15 n_{eq}/cm^2$: 160 V (IBL beam tests)
 - 1e16 n_{eg}/cm²: 180 V (new FEI4 beam tests) (see I. Lopez' talk)
 - $2e16 n_{eq}/cm^2$: 200-250 V from charge collection: Q~4 ke, CCE>20%
 - Will need less V_{op} for smaller electrode dist. (but possibly some compensation for thinner)
- Current at V_{op} similar to model prediction with α =4.7e-17 A/cm

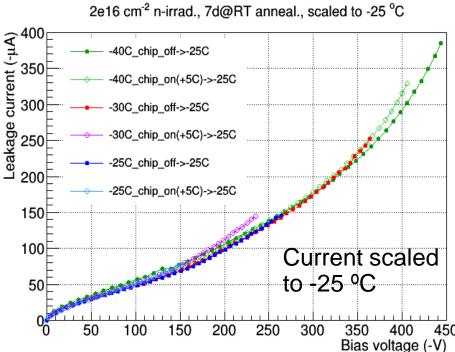

Measurements by D. Vazquez


7d@RT anneal., -25 °C

Model by Wunstorf/Moll

Leakage Current: Annealing





Model by Wunstorf/Moll

- Current decreases with annealing as expected
 - By ~20% after 1 week at room temperature

Leakage Current: Temperature Dependence

$$\frac{_{I}}{_{I_{0}}}=\left(\frac{_{T}}{_{T_{0}}}\right)^{2}e^{-\frac{E_{g}}{2k_{B}}\left(\frac{_{1}}{T}-\frac{_{1}}{T_{0}}\right)},$$
 where $E_{g}=$ **1**. **2eV**, $k_{B}=$ 8.62 \times 10⁻⁵eV/K

• Temperature scaling as expected (taking $E_g=1.2 \text{ eV}$)

250

300

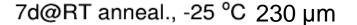
350

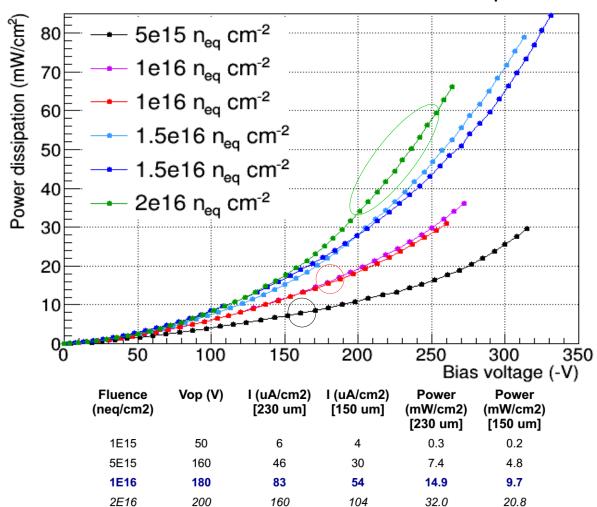
400

Bias voltage (-V)

450

- Higher current when FEI3 chip is on due to heating up
 - \rightarrow corresponds to T increase by \sim 5 C


200


50

100

150

Power Dissipation

- Critical parameter for cooling and stave/service design
 - Should be as low as possible
- ATLAS ITk baseline T of -25 C
- At 1e16 n_{eq}/cm² and V_{op}=180 V
 - 15 mW/cm² at 230 μm
 - 10 mW/cm² scaled to ATLAS ITk benchmark thickness of 150 µm (validity of scaling demonstrated on next slides)
- Significantly lower than for planar devices
- For smaller electrode distance
 → expect lower V_{op}
 (for same thickness)
 - → improved power dissipation

2E16

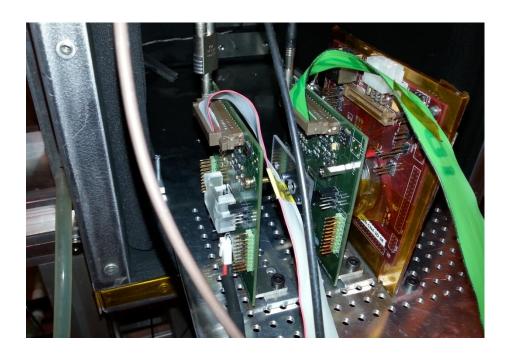
220

144

55.0

36.0

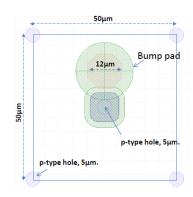
250


Compilation of Current and Power Dissipation

	_				I			
				Thick-	Electrode			P/area for
Fluence	V _{op}			ness	Distance	Diam.	230 µm	230 µm
[n _{ea} /cm ²]	[V]	Irradiation	Sample	[µm]	[µm]	[µm]	[µA/cm²]	[mW/cm ²]
5e15	160	n (Ljubljana)	CNM FEI3 Pixel [1]	230	71	13	46	7.4
		23 MeV p (KIT)	CNM34 FEI4 Pixel [2]	230	67	13	36	5.6
		23 MeV p (KIT)	CNM97 FEI4 Pixel [2]	230	67	13	41	6.6
		23 MeV p (KIT)	FBK11/87 FEI4 Pixel [2]	230	67	11	39	6.1
		n (Ljubljana)	CNM81 FEI4 Pixel [2]	230	67	13	48	7.6
		23 MeV p (KIT)	CNM strip 1 [3]	285	57	13	43	6.8
		23 MeV p (KIT)	CNM strip 2 [4]	285	57	13	44	7.0
		23 MeV p (KIT)	FBK strip [5]	230	57	11	40	6.4
		n (Ljubljana)	CNM diode [6]	50	57	6	50	8.0
1e16	180	n (Ljubljana)	CNM FEI3 Pixel [1]	230	71	13	83	14.9
		23 MeV p (KIT)	CNM strip 1 [3]	285	57	13	90	16.2
2e16	200	n (Ljubljana)	CNM FEI3 Pixel [1]	230	71	13	160	32.0
		23 MeV p (KIT)	CNM strip 2 [4]	285	57	13	98	19.6
		23 MeV p (KIT)	FBK strip [5]	230	57	11	165	33.0

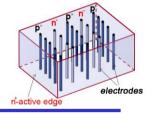
- Comparison between different 3D devices and irradiations (p, n)
- All values scaled to -25 C, 7d@RT annealing and 230 µm thickness
- Good agreement: max.
 41% deviation per fluence
 (usually better)
- Thickness scaling works (between 50 and 285 μm)
- Independent of
 - Column diameter (beetween 6 and 13 μm)
 - Electrode distance (between 57 and 71 μm)

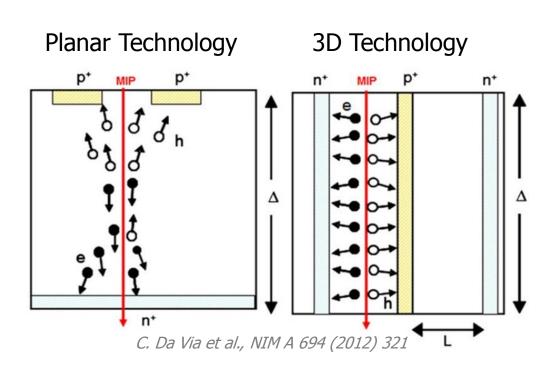
- [1] Measured by IFAE 2015 at -25 C, 7d@RT annealing (this talk)
- [2] ATLAS IBL Coll., JINST 7 (2012) P11010, remeasured by IFAE 2015 at -25 C, 120min@60C annealing
- [3] C. Fleta, RD50 Workshop June 2010, measured at -10 C, 1d@RT or 4min@80 C annealing
- [4] M. Köhler, PhD thesis Uni Freiburg, 2011, presented at 20 C, few days@RT annealing (not corrected for)
- [5] G.F. Dalla Betta et al., NIMA 765 (2014) 155, presented at -20 C, as irradiated (assumed 1d@RT annealing)
- [6] G. Pellegrini 27th RD50 workshop + M. Baselga, PhD thesis 2016 (in prep.), measured at -20 C, 8min@80 C annealing


Beam Tests

- Tried to measure FEI3 hit efficiencies in beam tests in July and September
- Not straight forward anymore to operate FEI3 in beam tests with EUDET/AIDA telescopes
 - Seem to be very sensitive to noise and high rate
 - Eventually working
- Took a few runs for 1e16 n_{eq}/cm²
 FEI3 device
 - Analysis on-going
- More runs planned at next beam tests

Conclusions


- First time studied 3D pixel detectors up to HL-LHC fluences
 - Here: neutron irradiated FEI3 up to 2e16 n_{eq}/cm²
 - Next talk: proton irradiated FEI4 up to 9e15 n_{eq}/cm²
- Even IBL/AFP generation of pixel detectors shows good performance
 - MPV~4 ke and CCE>20% at 2e16 n_{eq}/cm² for 2.5 ke FEI3 threshold
 - ightarrow expected to improve significantly at 1 ke HL-LHC threshold and 35 μm electrode distance
 - Leakage current at V_{op} close to model expectations from bulk current
 - Excellent power dissipation:
 15 (10) mW/cm² at 1e16 n_{eq}/cm² for 230 (150) μm thickness and -25 C
- New 3D production runs on-going
 - Smaller pixel size and electrode distance, thinner, smaller columns
 → expect improved performance
 - First results expected early next year



BACKUP

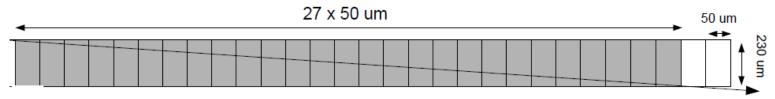
3D Detector Principle

Radiation-hard and active/slim-edge technology

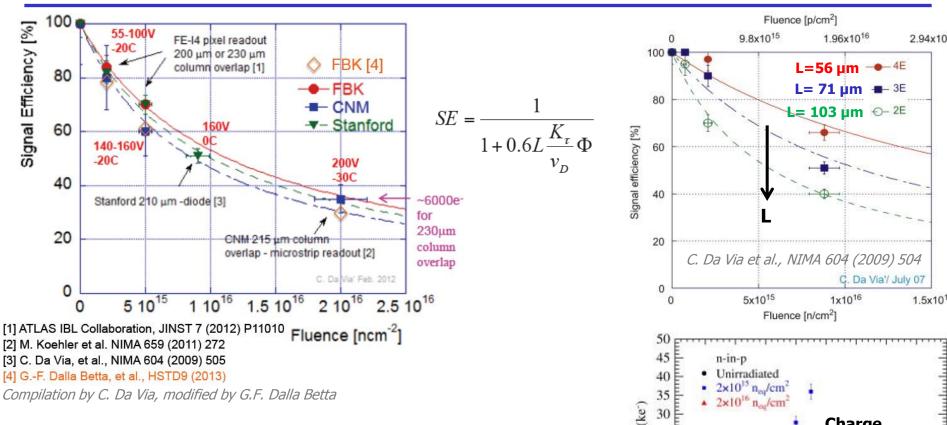
Advantages

- Electrode distance decoupled from sensitive detector thickness
 - \rightarrow lower $V_{depletion}$
 - → less power dissipation, cooling
 - → smaller drift distance
 - → faster charge collection
 - → less trapping
- Active or slim edges are natural feature of 3D technology

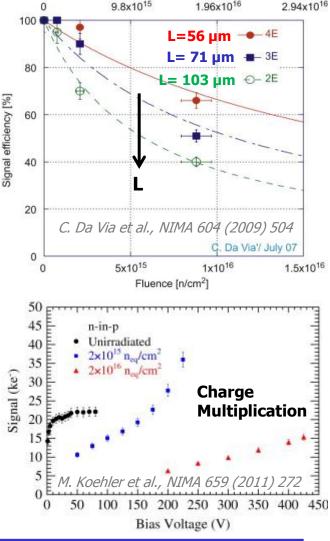
Challenges


- Complex production process
 - → long production time
 - → lower yields
 - → higher costs
- Higher capacitance
 - → higher noise
- Non-uniform response from 3D columns and low-field regions
 - → small efficiency loss at 0

HL-LHC Studies: High Eta


- Large clusters → large total charge → efficiency for whole cluster not a problem
- But for 50 μm pitch very small charge deposition per pixel (almost parallel tracks): 3300 e
- Testbeam campaign to measure CNM+FBK IBL FE-I4 devices with 80 angle in short pitch direction (50 μm)
 - 1000 + 1500 e threshold
 - Cluster size 24-27
 - >99% efficiency per pixel before irradiation

See talk by Ivan Lopez


80 $(\eta=2.4) \rightarrow Q=3300 \text{ e/pixel (50 } \mu\text{m})$

R&D Performance Summary

- Signal efficiency (SE) of 60-70% at $5x10^{15}$ n_{eq} /cm² and 30% at $2x10^{16}$ n_{eq} /cm² achieved for moderate V < 200 V
- Signal efficiency (SE) improves with decreasing electrode distance L
- Charge multiplication at high fluences and V can further boost collected charge

