

Towards to a new radiation damage model for Synopsys TCAD

Joern Schwandt

Institute for Experimental Physics University of Hamburg

27th RD50 Workshop December 2-4, 2015

Introduction

High-Luminosity LHC (~ 2024):

- Luminosity of 5x10³⁴ cm⁻²s⁻¹, operate up to 200 events/crossing
- Maintain occupancy at $\approx 1\%$ level and increase the resolution
- \Rightarrow Pixel size $\sim 25 \times 100 \ \mu m^2$ or $50 \times 50 \ \mu m^2$ (currently $100 \times 150 \ \mu m^2$)

CMS Tracker baseline layout:

Radiation tolerance for the Ith pixel layer after 3000 fb-1:

• $\Phi_{eq} \approx 2 \times 10^{16} \, \text{cm}^{-2}$, Dose $\approx 5 \, \text{MGy}$

Pixel sensors (3D or thin planar) which can withstand these radiation fluence are needed

Radiation damage

Optimization of the sensor → simulations

Simulations → device modeling (TCAD)

+ models for bulk & surf. damage

Bulk damage (NIEL):

- Point and cluster defects
 - →Increase of leakage current
 - → Change of the space charge in the depletion region, increase of full depletion voltage
 - →Charge trapping

Surface damage* (Ionizing Energy Loss):

† Oxide charge & † interface trap

The models for bulk & surf. damage have to be correct (independently)

^{*} In this talk, not further discussed

Defect modeling approach

Radiation damage depends on

• particle type, energy, annealing, silicon material + vendor (surface)

It is measured on

- diodes (bulk damage)
 - macroscopic (I-V, C-V, <u>Transient Current Technique</u>)
 - microscopic (Thermally Stimulated Current)
- special test structures (surface damage)
 - I-V, C/G-V and Thermally Dielectric Relaxation Current

Validation of combined model on segmented sensor

Options for bulk damage modeling:

Multi-trap model based on microscopic measurements

• Effective trap model tuned to macroscopic measurements e.g. Eremin 2-trap model

Acceptor (A) and donor (D) Energy levels fixed

Basics of effective 2-trap models I

- One acceptor (A) and one donor (D)
- Energy levels fixed

EA	E _D					
E _C -0.525 eV	E _V + 0.48 eV					

Traps obey Shockley-Read-Hall statistics:

(Eremin et al, NIMA 476 2002)

2 trap model → 6 parameter

I. Concentrations: N_A , N_D

2. Cross sections $: \sigma^{A_e}$, σ^{A_h} , σ^{D_e} , σ^{D_h}

Basics of effective 2-trap models II

TCAD allows solving of device equations together with traps

- Poisson: $\nabla \cdot \epsilon \nabla V =
 ho_{eff}$ with $ho_{eff} = q[p-n+N_D f_D N_A f_A] +
 ho_{dopants}$
 - with f_D and f_A the occupied fractions given by SRH
- 2. Continuity equations: $\frac{\partial n}{\partial t} = \frac{1}{q} \nabla \cdot J_n + R_{net}$ with $J_n = q n \mu_n E + D_n \frac{dn}{dx}$

$$\frac{\partial p}{\partial t} = -\frac{1}{q} \nabla \cdot J_p + R_{net}$$
 with $J_p = q p \mu_p E - D_p \frac{dp}{dx}$

with R_{net} the net generation/recombination rate

Trapping is included and the effective trapping rates are given by the expressions:

$$\Gamma_e = v_e [\sigma_e^A N_A (1-f_A) + \sigma_e^D N_D f_D] \approx v_e \sigma_e^A N_A$$
 approx. if f_A and f_D negligible
$$\Gamma_h = v_h [\sigma_h^D N_D (1-f_D) + \sigma_h^A N_A f_A] \approx v_h \sigma_h^D N_D$$

Aim:

 Simultaneous tuning of the 6 parameter to reproduce I-V, C-V and CCE with as simple as possible fluence dependence of parameters

Existing bulk damage models

Some available models:

1. 2-trap proton model (R. Eber Phd 2013): 23 MeV proton, $10min@60^{\circ}C$, $\leq 10^{15} n_{eq}/cm$

Table 11.3:	Two-Defect	model for	proton	irradiation.
iubic ii.j.	IWO DCICCI	model for	proton	middiantion.

Parameter	Donor	Acceptor
Energy (eV)	$E_V + 0.48$	$E_C - 0.525$
Concentration (cm ⁻³	$(5.598\mathrm{cm}^{-1}\mathrm{\times}\mathrm{F})$	$-3.949 \cdot 10^{14}$ $1.189 \text{ cm}^{-1} \times \text{F} + 6.454 \cdot 10^{13}$
$\sigma(e)$ (cm ²)	1.0×10^{-14}	1.0×10^{-14}
$\sigma(h)$ (cm ²)	1.0×10^{-14}	1.0×10^{-14}

2. 3-trap Perugia model (D. Passeri IEEE TNS 2006): $\leq 10^{15} \text{ n}_{eq}/\text{cm}^2$

Defect	E (eV)	$\sigma_e ({\rm cm}^{-2})$	$\sigma_n (\mathrm{cm}^{-2})$	η
Acceptor Acceptor Donor	$E_c - 0.42$ $E_c - 0.46$ $E_v + 0.36$	1.00×10^{-15} 7.00×10^{-15} 3.23×10^{-13}	1.00×10^{-14} 7.00×10^{-14} 3.23×10^{-14}	1.6 0.9 0.9

3. 2-trap proton model (Delhi, G. Jain NIMA 2015): 23 MeV proton, model for Silvaco TCAD

Damage	Trap type	Energy level (eV)	Density (cm ⁻³)	$\sigma_e (\mathrm{cm}^{-2})$	$\sigma_h (\mathrm{cm}^{-2})$
Bulk Bulk	Acceptor Donor	$E_C - 0.51$ $E_V + 0.48$	$4 imes \phi$ $3 imes \phi$	2.0×10^{-14} 2.0×10^{-14}	2.6×10^{-14} 2.0×10^{-14}

Where do we stand?

Why another bulk damage model?

- The current bulk models are limited in fluence ($< 3 \cdot 10^{15} \, n_{eq}/cm^2$)
- Do not include annealing effects
- Are tuned to one specific material type & irradiation

Examples:

• HPK diode, p-type, 200 um thick,T = -20 °C

Toward to a new model

First attempts for new effective damage model:

• Simulation of I-V and C-V of diodes for different fluences (HPK campaign) using the optimizer of TCAD for the determination of the 6 free parameters (≈ 3 min/sim.) i.e. minimize the relative deviation between the simulations and measurements over a large voltage range or more precise: Minimize

$$F = w_1 \int_{V_{min}}^{V_{max}} (1 - \frac{I_{sim}}{I_{mes}})^2 dV + w_2 \int_{V_{min}}^{V_{max}} (1 - \frac{C_{sim}}{C_{mes}})^2 dV$$

with I_{sim} simulated current, I_{mes} measured current C_{sim} simulated capacitance, C_{mes} measured capacitance V_{min} , V_{max} min. and max of voltage range w_1 , w_2 weighting factors using for example an quasi-Newton methods.

First optimization results

Good match of I-V & C-V simultaneously

TCT simulations (CCE)

Check with CCE vs voltage for IR (1063nm) laser

CCE simulation takes too long to be included in optimization procedure 180 min/sim

- Models from Eber and Delhi results in too low CCE
- New fit gives too high CCE at low voltages

Next step:

- Possibly include forward I-V to get constrain on recombination
- Are 2-traps sufficient for a consistent description at high fluences?

Case: 23 GeV p I · I0¹⁵ n_{eq}/cm²

Forward I-V for 23 GeV p 3 · 10¹⁵ n_{eq}/cm²

Forward I-V measurement compared to simulations

None of the models reproduce the measured forward I-V

• Fit with I-V, C-V and forward I-V using the EVL 2-trap model doesn't converge

Next steps to test:

• Let the energy levels in the 2-trap model free (8 parameter)

3-trap models (9 parameter or 12 parameter)

Diodes: Irradiation plan

Data between 3e15 and 1.3e16 n_{eq}/cm² for model building needed

			irradiation done		planned	NO SAMPLES						
						eV protons						
R/cm	10					İ			5			
Φ/1e15	3	Large	Small	6	Large	Small	9	Large	Small	13	Large	Small
Epi100N		Epi100N_02_DiodeL_11	Epi100N_03_DiodeS_13		Epi100N_03_DiodeL_2	NO SAMPLES		Epi100N_02_DiodeL_3	NO SAMPLES		Epi100N_03_Diode_1	Epi100N_02_DiodeS_13
		Epi100N_03_DiodeL_11									Epi100N_03_Diode_2	Epi100N_03_DiodeS_14
Epi100Y		Epi100Y_02_Diode_1	Epi100Y_02_DiodeS_15		Epi100Y_02_DiodeL_3	Epi100Y_03_DiodeS_13		Epi100Y_04_DiodeL_3	Epi100Y_05_DiodeS_15		Epi100Y_03_Diode_1	Epi100Y_03_DiodeS_15
·		Epi100Y_05_Diode_1									Epi100Y_03_Diode_2	
FZ120N		FZ120N_05_Diode_2	NO SAMPLES		FZ120N_05_DiodeL_9	NO SAMPLES		FZ120N_07_Diode_1	FZ120N_05_DiodeS_16		FZ120N_06_Diode_1	FZ120N_06_DiodeS_16
FZ120Y		FZ120Y_07_DiodeL_2	FZ120Y_03_DiodeS_16		FZ120Y_07_DiodeL_3	FZ120Y_06_DiodeS_16		FZ120Y_07_DiodeL_8	FZ120Y_07_DiodeS_13		FZ120Y_07_DiodeL_9	FZ120Y_07_DiodeS_14
FTH200N		FTH200N_24_Diode_2			FTH200N_04_Diode_2	FTH200N_02_DiodeS_14		FTH200N_06_Diode_1	FTH200N_02_DiodeS_16		FTH200N_25_Diode_2	FTH200N_04_DiodeS_14
FTH200P					FTH200P_03_DiodeL_5	FTH200P_01_DiodeS_14		FTH200P_03_DiodeL_9	FTH200P_01_DiodeS_16			
FTH200Y		FTH200Y_01_DiodeL_5	FTH200Y_02_DiodeS_16		NO SAMPLES	NO SAMPLES		NO SAMPLES	NO SAMPLES		FTH200Y_01_Diode_1	FTH200Y_03_DiodeS_16
MCZ200N		MCZ200N_04_DiodeL_8			NO SAMPLES	NO SAMPLES		NO SAMPLES	NO SAMPLES		MCZ200N_06_DiodeL_11	MCZ200N_06_DiodeS_14
											MCZ200N_09_DiodeL_11	
M200P			NO SAMPLES		MCZ200P_01_DiodeL_8	MCZ200P_03_DiodeS_13		MCZ200P_02_DiodeL_8	MCZ200P_02_DiodeS_13			
M200Y		MCZ200Y_04_Diode_2	MCZ200Y_03_DiodeS_13		NO SAMPLES	NO SAMPLES		NO SAMPLES	NO SAMPLES		MCZ200Y_04_DiodeL_9	MCZ200Y_05_DiodeS_15
FZ200N		NO SAMPLES	NO SAMPLES		NO SAMPLES	NO SAMPLES		NO SAMPLES	NO SAMPLES		NO SAMPLES	NO SAMPLES
FZ200Y		FZ200Y_02_DiodeL_11	FZ200Y_03_DiodeS_13		FZ200Y_03_Diode_1	FZ200Y_04_DiodeS_13		FZ200Y_05_DiodeL_11	FZ200Y_05_DiodeS_13		FZ200Y_06_DiodeL_11	FZ200Y_06_DiodeS_13
FZ320N		FZ320N_07_DiodeL_3	FZ320N_01_DiodeS_16		FZ320N_07_DiodeL_5	FZ320N_07_DiodeS_13		NO SAMPLES	FZ320N_07_DiodeS_14		NO SAMPLES	FZ320N_07_DiodeS_16
FZ320Y		FZ320Y_05_DiodeL_9	FZ320Y_04_DiodeS_13		FZ320Y_05_DiodeL_11	FZ320Y_05_DiodeS_16		FZ320Y_06_DiodeL_8	FZ320Y_06_DiodeS_13		FZ320Y_06_DiodeL_9	FZ320Y_06_DiodeS_16

Irradiation with 24 GeV/c p at the PS on the way

Summary

- I. It was shown that the available bulk damage models do not reproduce the data for high fluences
- 2. An attempt is made to develop a new model by fitting I-V and C-V measurements using the optimizer of TCAD
- 3. It seems that a 2-trap model is not able to describe I-V, C-V and CCE simultaneously
- 4. Diode irradiations with fluences $3 \cdot 10^{15}$ n_{eq}/cm^2 , $6 \cdot 10^{15}$ n_{eq}/cm^2 , $9 \cdot 10^{15}$ n_{eq}/cm^2 and $1.3 \cdot 10^{15}$ n_{eq}/cm^2

Backup

Charge Collection Efficiency of Diodes at T = -20°C

Figure 11.24: Charge collection efficiency of FZ320N diodes at $T=-20\,^{\circ}C$ and several fluences (proton and neutron irradiation):

The CCE is simulated quite well, only at $F = 10^{15} \, n_{eq} \, cm^{-2}$ the measured CCE values are higher. Data partly from [Poe13].