Beam test of 3D pixel detectors up to fluences of $9x10^{15}$ n_{eq}/cm²

I. López Paz

E. Cavallaro, F. Förster, S. Grinstein, J. Lange, D. Vazquez

RD50 workshop 2015, CERN Dec 4th, 2015

3D irradiation campaign

- IRRAD (CERN) 23 GeV protons (Nov 2014)
 - 9x 3D FEI4 bare assemblies (8 CNM/1 FBK)
 - No scanning available:

Thanks to Federico Ravotti for irradiation!

- Non-uniform (12 mm FWHM)
- Selected two devices for assembly and tests
 - Nominal fluences: $5.2x10^{15}$ n_{eq} /cm² and $8.4x10^{15}$ n_{eq} /cm² (as measured in 5x5 mm² Al)
- Other devices were further irradiated up to 2x10¹⁶ n_{eq}/cm²
- JSI Lubljana neutrons (May 2015)
 - FEI3 irradiated up to $2x10^{16}$ n_{eq}/cm^2
 - See J. Lange's presentation

Thanks to Igor Mandic, Vladimir Cindro for irradiation and AIDA2020 support l₂₂₅

Testbeam

Irradiated FE-I4 CNM 3D sensors:

6181-07-02: 5.2x10¹⁵ n_{eq}/cm² (peak 5.6x10¹⁵)

- 5860-12-07: 8.4x10¹⁵ n_{eq} /cm² (peak 9.1x10¹⁵)

July 2015 ITk testbeam at CERN:

- Temperature: -40 and -30 °C

 Temperature in cooling box, sensor is ~5 °C warmer

– Tuning:

Threshold: 1500 e

ToT: 10ToT at 10ke

RD50 workshop 2015, CERN

Overall efficiencies

- Good overall efficiencies
 - But low efficiencies might be averaged out...
- Non-uniform fluence
 - Assume Gauss distribution (FWHM ~12 mm)
 - More sophisticated analysis in the future

Overall efficiencies

- Peak of Gauss by fitting a parabola around minimum of TOT vs column/row
- Probe vast range of fluences for the same device

Efficiencies vs fluence

- Agreement in efficiency for areas irradiated at the same fluence in both devices
 - Some disagreement due to uncertainties in fluence distribution
 - Distribution not exactly a gaussian
 - Nominal fluence uncertainty ~10%
- Good efficiency (> 97 %) reached at ~170 V for all fluences
- Probed an almost continuous range of fluences with only two devices

Efficiency vs voltage

	Φ _{eq} [n _{eq} /cm ²]	V [V]	Eff [%]
CNM34 IBL [1]	5x10 ¹⁵	140	97.6
6181-12-07	5x10 ¹⁵	150	97.5
6181-12-07	9x10 ¹⁵	170	97.8

[1] JINST 7 P11010 (2012)

- Able to reach over 97% efficiency for all fluences at maximally 170 V
- Agrees with IBL 5e15 results

Efficiency vs temperature

- Consistent efficiencies at different temperatures for similar voltages
 - Efficiency is not affected by temperature

Charge collection vs fluence

- Tuned at 10ToT @ 10ke, 1500e threshold
 - For low fluences (< ~3e15) and high voltages, most ToT entries are in the overflow bin
 → Re-measured at different ToT tunings for charge collection studies, analysis underway
- Good agreement between the two devices in the same fluence regions for the same voltages
- Average of 8ToT (~8000 e) at highest voltage and fluence

→ well above threshold for so high fluences

Avg. ToT

Conclusions

- Studied efficiency at intermediate ITk fluences (up to \sim 9e15 n_{eq}/cm²) with CNM 3D FEI4 devices
 - Irradiated at CERN PS Nov 2014 → No scanning available:
 - Non-uniform (12 mm FWHM)
 - → Assume gauss distr and probe large range of fluences
 - Two devices assembled and tested in testbeam:
 - Nominal fluences: $5.2x10^{15}$ n_{eq}/cm² and $8.4x10^{15}$ n_{eq}/cm² (as measured in 5x5 mm² Al \rightarrow larger peak fluences)
- IBL/AFP generation 3D detectors proven suitable for ITk
 - FEI3 n-irrad:
 - 15 (10) mW/cm² at $1x10^{16}$ n_{eq}/cm² for 230 (150) μ m
 - CCE > 20% at $2x10^{16}$ n_{eq}/cm² for 2.5 ke threshold
 - FEI4 p-irrad:
 - Up to ~97.5% efficiency at ~9x10 15 n_{eq}/cm² (170V)
 - Expect improvement with lower thresholds and smaller electrode distance

Back-up slides