EIBURG

Measurements of the effective bandgap and current related damage rate of highly irradiated silicon sensors

Moritz Wiehe^a
Tony Affolder^b
Gianluigi Casse^b
Paul Dervan^b
Susanne Kühn^a
Riccardo Mori^a
Ulrich Parzefall^a
Sven Wonsak^b

27th RD50 Workshop CERN, 03.12.2015

Albert-Ludwigs-Universität Freiburg

b) University of Liverpool

Outline

- Introduction: Leakage Current
- Setup
- Results for effective bandgap E_{g,eff}
- Results for current related damage rate α*
- Conclusion

Leakage current after irradiation is proportional to irradiation fluence by Current-Related-Damage-Rate α :

$$I(\Phi_{eq}) - I_0 = \Delta I = \alpha \Phi_{eq} V$$

Radiation damage in silicon detectors, Gunnar Lindström

Calculation of temperature depende with scaling parameter $\mathbf{E}_{q,eff}$:

$$I(T_2) = I(T_1) \cdot \left(\frac{T_2}{T_1}\right)^2 e^{-\frac{E_{g,eff}}{2k_B}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)}$$

IV-measurements were performed at low temperatures (-23°C, -27°C, -32°C) for different sensors to estimate $E_{g,eff}$ and α *.

Depleted volume is unknown

→ physical volume is used for calculation
(see also: Sven Wonsak et al.

Measurements of the reverse current of
highly irradiated silicon sensors)

IV-Setup

Improved features of new setup:

- Easy handling, due to PCBs
- Temperature measured by PT1000 directly on top of sensor
- No ingress of moisture

- Stable surrounding temperature (freezer)
- Temperature controlled by PID-Controller

IV-Setup

5. Freezer

- 6. PR-59-temperature controller
- 7. Chiller with colling liquid
- 8. PC for data acquisition

wentis:bune

Z

IV-Setup

- "Printed Circuit board" with sensor glued on top
- 2. Aluminiumjig for mounting PCB
- 3. Cooling unit (Peltier element, copper block)
- 4. Plexiglas cover

Nr.	Sensor	$\mathrm{d}\left[\mu\mathbf{m}\right]$	$\Phi_{eq} \; [\mathit{n}_{eq}/\mathit{cm}^2]$
1	HPK W277-BZ5-P23	293	2 · 10 ¹⁴
2	Micron 2437-14-M	143	$2 \cdot 10^{14}$
3	Micron 2437-14-O	143	$5 \cdot 10^{14}$
4	Micron 2437-14-Q	143	$1 \cdot 10^{15}$
5	HPK W264-BZ5-P23	293	$2 \cdot 10^{15}$
6	Micron 2437-14-S	143	$2 \cdot 10^{15}$
7	HPK W72-BZ3-P18	293	5 · 10 ¹⁵
8	Micron 2437-14-F	143	5 · 10 ¹⁵
9	HPK W73-BZ2-P20	293	$1 \cdot 10^{16}$
10	Micron 2437-14-G	143	$1 \cdot 10^{16}$
11	HPK W104-BZ2-P2	293	$1, 5 \cdot 10^{16}$
12	HPK W104-BZ2-P17	293	$2 \cdot 10^{16}$
13	Micron 2437-14-H	143	$2 \cdot 10^{16}$
14	Micron 3107-6-3	50	$1\cdot 10^{15}$
15	Micron 3107-6-9	50	$2 \cdot 10^{15}$
		50	5 · 10 ¹⁵
16	Micron 3107-6-10		$1 \cdot 10^{16}$
17	Micron 3107-6-14	50	
18	Micron 3107-6-21	50	$2 \cdot 10^{16}$

active area of sensors:

Hamamatsu (HPK): (0, 8348 × 0, 86)cm 2

Micron: (1, 0985 × 1, 0973)cm 2 (only n-in-p-sensors used)

Performance of setup

Measurement of unirradiated sensor results in expected value of $E_{g,eff} = 1.12 \text{ eV}$ Ten IV-measurements of irradiated sensor at $T = -23^{\circ}\text{C}$:

 \rightarrow mean standard deviation (0, 926 ± 0, 0018) % for every current measurement

Measured sensor temperature does not deviate by more than 0.15°C from target temperature. (optimized PID parameters, unbiased sensor)

Scaling method:

Calculate $E_{g,eff}$ for every set of two temperatures

$$E_{g,eff} = -2k_B \frac{T_1 T_2}{T_1 - T_2} \cdot \ln \left[\frac{I_2 T_1^2}{I_1 T_2^2} \right]$$

Fit method:

Perform fit of set of measurements

$$I(T) = A \cdot T^2 e^{-\frac{E_{g,eff}}{2k_BT}}$$

uncertainty on each value: measurement uncertainty + correlation. but dominant uncertainty: systematic variation of calculated values with voltage. (up to 0, 1 eV for some sensors) HPK 293 um

$$\frac{I(T_2)}{I(T_1)} = \left(\frac{T_2}{T_1}\right)^2 e^{-\frac{E_{g,eff}}{2k_B}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)}$$

self heating of sensor might lead to incorrect temperature measurement → effect more pronounced at high voltages and higher fluences

to account for unexpected voltage dependence a systematic uncertainty on the temperature measurement is assumed:

$$s_{T,sys} = 0.15\,^{\circ}\mathrm{C} \Rightarrow s_{E_{g,eff},sys} = 0.03\,\mathrm{eV}$$

E_{g,eff} vs. fluence

Additional measurement at -43°C and -39°C of 293um HPK-sensor, $2x10^{16}$ neq/cm^{2:} $\rightarrow E_{a,eff} = 1.116 \text{ eV (-0.026 eV)}$

result

$$E_{g,eff} = (1, 18 \pm 0, 03) \,\mathrm{eV}$$
 (Lit. $E_{g,eff} = (1, 214 \pm 0, 014) \,\mathrm{eV}$ [1])

[1] A Chilingarov. Temperature dependence of the current generated in Si-bulk

α* vs. voltage

$$\alpha^* = \frac{I(\Phi_{eq}) - I_0}{\Phi_{eq}V}$$

for fully depleted sensor: $\alpha^* \equiv \alpha = \mathrm{const.}$ Full depletion voltage usually not reached for high fluences.

HPK 293 um

α* vs. fluence

α* shown for highest voltage (350 V for 50 μm-Micron, 1000 V otherwise)

(three highest irradiated HPK-sensors not considered for fit.)

$$\alpha^* = (7.8 \pm 0.9) \cdot 10^{-17} \,\mathrm{A/cm}$$
 (Lit. $\alpha = (6, 40 \pm 0, 43) \cdot 10^{-17} \,\mathrm{A/cm}$ [2])

[2] Sven Wonsak et al. Measurements of the reverse current of highly irradiated silicon sensors

α* - voltage dependence

Conclusion

IV-measurements with new setup:

Calculated $\mathbf{E}_{q,eff}$ and $\mathbf{\alpha}^*$ for 18 irradiated sensors

Three sensor types: 293um HPK, 143um Micron, 50um Micron

Irradiation fluences: 2x10¹⁴ – 2x10¹⁶ neq/cm²

E_{g,eff}: Tendency to lower values at high fluences observed

But strong dependence on efficiency of cooling system

$$E_{g,eff} = (1, 18 \pm 0, 03) \, \mathrm{eV}$$
 (all measurements included)

•
$$E_{g,eff}^{low\Phi}=(1,19\pm0,03)\,\mathrm{eV}$$

(fluence up to $10^{15}\,\mathrm{n_{eq}/cm^2})$
literature [1]:

$$E_{g,eff}^{lit} = (1,214 \pm 0,014) \,\mathrm{eV}$$

•
$$\alpha^* = (7.8 \pm 0.9) \cdot 10^{-17} \, \text{A/cm}$$
 (three sensors not included)

literature [2]:
$$\alpha_{lit}^* = (6, 40 \pm 0, 43) \cdot 10^{-17} \,\text{A/cm}$$

Backup

Correlation of uncertainties

Fluctuations of sensortemperature influence current measurement.

 \Rightarrow Calculation of correlation coefficient from 10 IV-measurements (T = -23 \circ C)

$$\rho(I,T) = \frac{cov(I,T)}{\sigma_I \sigma_T} = \frac{1}{N \cdot \sigma_I \sigma_T} \sum_{i=1}^{N} (I_i - \overline{I})(T_i - \overline{T})$$

FREIBURG

E_{g,eff} for different irradiation doses

Nr.	Sensor	$\mathrm{d}\left[\mu \mathit{m}\right]$	$\Phi_{eq} [n_{eq}/cm^2]$	$E_{g,eff}^{fit}$ [eV]
1	HPK W277-BZ5-P23	293	2 · 10 ¹⁴	$1,2096 \pm 0,0013 \pm 0,03$
2	Micron 2437-14-M	143	$2 \cdot 10^{14}$	$1,1834\pm0,0015\pm0,03$
3	Micron 2437-14-0	143	$5 \cdot 10^{14}$	$1,2057\pm0,0017\pm0,03$
4	Micron 2437-14-Q	143	$1 \cdot 10^{15}$	$1,1747 \pm 0,0022 \pm 0,03$
5	HPK W264-BZ5-P23	293	$2 \cdot 10^{15}$	$1,1753 \pm 0,0011 \pm 0,03$
6	Micron 2437-14-S	143	$2 \cdot 10^{15}$	$1,1508 \pm 0,0019 \pm 0,03$
7	HPK W72-BZ3-P18	293	$5 \cdot 10^{15}$	$1,2347\pm0,0028\pm0,03$
8	Micron 2437-14-F	143	5 · 10 ¹⁵	$1,1795\pm0,0012\pm0,03$
9	HPK W73-BZ2-P20	293	$1\cdot 10^{16}$	$1,1632\pm0,0014\pm0,03$
10	Micron 2437-14-G	143	$1 \cdot 10^{16}$	$1,1822\pm0,0012\pm0,03$
11	HPK W104-BZ2-P2	293	$1,5\cdot 10^{16}$	$1,1327\pm0,0006\pm0,03$
12	HPK W104-BZ2-P17	293	$2 \cdot 10^{16}$	$1,1418\pm0,0009\pm0,03$
13	Micron 2437-14-H	143	$2 \cdot 10^{16}$	$1,123\pm0,001\pm0,03$
14	Micron 3107-6-3	50	$1\cdot 10^{15}$	$1,1965 \pm 0,0015 \pm 0,03$
15	Micron 3107-6-9	50	$2 \cdot 10^{15}$	$1,1544 \pm 0,0015 \pm 0,03$
16	Micron 3107-6-10	50	5 · 10 ¹⁵	$1,1615 \pm 0,0017 \pm 0,03$
17	Micron 3107-6-14	50	$1 \cdot 10^{16}$	$1,1847 \pm 0,0015 \pm 0,03$
18	Micron 3107-6-21	50	$2 \cdot 10^{16}$	$1,2023\pm0,0012\pm0,03$
Lit. [1]				$1,214\pm 0,014$

α* for different irradiation doses

Nr.	$\mathrm{d}\left[\mu\mathbf{m}\right]$	$\Phi_{eq} [n_{eq}/cm^2]$	$\alpha^*_{max\ V}\ [10^{-17}\ \mathrm{A/cm}]$
1	293	2 · 10 ¹⁴	$7,7\pm0,5\pm1,0$
2	143	$2 \cdot 10^{14}$	$9,3\pm 0,7\pm 1,2$
3	143	$5 \cdot 10^{14}$	$7,8\pm 0,5\pm 1,0$
4	143	$1 \cdot 10^{15}$	$8,6\pm 0,6\pm 1,1$
5	293	$2 \cdot 10^{15}$	$6,2\pm0.4\pm0,8$
6	143	$2 \cdot 10^{15}$	$10,2\pm 0,7\pm 1,3$
7	293	$5 \cdot 10^{15}$	$6,8\pm 0,5\pm 0,9$
8	143	$5 \cdot 10^{15}$	$9,1\pm 0,6\pm 1,2$
9	293	$1 \cdot 10^{16}$	$3,6\pm 0,2\pm 0,5$
10	143	$1 \cdot 10^{16}$	$6,9\pm 0,5\pm 0,9$
11	293	$1, 5 \cdot 10^{16}$	$2,66\pm0,18\pm0,3$
12	293	$2 \cdot 10^{16}$	$2,64\pm0,18\pm0,3$
13	143	$2 \cdot 10^{16}$	$6,5\pm 0,5\pm 0,8$
14	50	$1 \cdot 10^{15}$	$10,4\pm 1,0\pm 1,3$
15	50	$2 \cdot 10^{15}$	$8,6\pm 0,9\pm 1,1$
16	50	5 · 10 ¹⁵	$8,2\pm 0,8\pm 1,1$
17	50	$1 \cdot 10^{16}$	$8,1\pm 0,8\pm 1,1$
18	50	$2 \cdot 10^{16}$	$8,2\pm 0,8\pm 1,1$
Lit. [2]			$6,40\pm 0,43$

ΔI /V vs. fluence

IV-measurements at different temperatures

Procedure:

- Temperatures of $-23\,^{\circ}\mathrm{C},\ -27\,^{\circ}\mathrm{C}$ und $-32\,^{\circ}\mathrm{C}$
- Voltage supply: positive high voltage on implants ground on backplane
- temperatures of cooling liquid:

$$+2$$
 °C at -23 °C, -27 °C-measurement -10 °C at -32 °C-measurement

- lacktriangle voltage step size: $1\,\mathrm{V/s}$
- voltage constant for 10 s before starting each measurement
- measuring current in 5 V-steps while ramping down voltage to 0 V