Characterization of LGAD sensors from CNM Run 7859

Sofía Otero Ugobono^{1,2}

A. Diez³, M. Fernández^{1,3}, C. Gallrapp¹, R. Jaramillo³, I. Mateu Suau^{1,4}, M. Moll¹, M. Stricker¹, I. Vila¹
With CNM-Barcelona and RD50 I GAD Teams.

¹CERN

²Universidade de Santiago de Compostela

³IFCA - Universidad de Cantabria

⁴CIEMAT

December 2015

Index

- Introduction
- Measurements before irradiation
 - CV/IV
 - TCT+
 - Sr-90 source measurements
 - Gain

- Measurements after irradiation
 - Irradiation campaign
 - CV/IV
- Microstrip LGADs
- Conclusions
- 6 Future steps

Wafer characteristics

Multiplication layer dose: $1.8 \times 10^{13} \text{ cm}^{-2}$

- Wafers 1 and 2.
- Only one LGAD without JTE.
- PIN diodes also available.

Multiplication layer dose: $2.0 \times 10^{13} \text{ cm}^{-2}$

- Wafers 3 and 4.
- PIN diodes also available.

Index

Measurements before irradiation

Measurements after irradiation

- Measurements before irradiation

Introduction

- CV/IV
- TCT+
- Sr-90 source measurements
- Gain

- - Irradiation campaign
 - CV/IV

Introduction Measurements before irradiation Measurements after irradiation

Introduction

CV/IV curves (before irradiation)

Introduction Measurements before irradiation Measurements after irradiation

TCT - IR back (before irradiation)

Introduction

Measurements before irradiation Measurements after irradiation

Introduction

Measurements before irradiation

TCT - Red front (before irradiation)

Introduction

Measurements before irradiation

Measurements after irradiation

Homogeneity at 100 V (before irradiation)

Introduction

Measurements before irradiation Measurements after irradiation

Sr-90 source measurements (before irradiation)

Introduction

Measurements before irradiation

Measurements after irradiation

Results at 20°C

- Peak signal in PIN diode:
 - \circ \sim 34 mV
- Gain LGAD 1.8:
 - at 200V $\rightarrow \sim 3.2$
 - at $1000V \rightarrow \sim 5.3$
- Gain LGAD 2.0:
 - at $200V \rightarrow \sim 7.3$
 - at $1000V \rightarrow \sim 17.6$

Measurements before irradiation Measurements after irradiation

Introduction

Gain values obtained at 700 V for each type of measurement

	TCT – IR back	TCT – Red back	TCT – Red front	Sr-90
$1.8 \times 10^{13} \text{ cm}^{-2}$	5.7	6.2	4.3	4.4
$2.0\times 10^{13}~\text{cm}^{-2}$	W3 = 31.9 W4 = 25.7	21.4	W3 = 10.6 W4 = 12.9	11.7

Measurements before irradiation

Introduction

Index

- - CV/IV
 - TCT+
 - Sr-90 source measurements
 - Gain

- Measurements after irradiation
 - Irradiation campaign
 - CV/IV

Irradiation campaign

Irradiation campaign

- Irradiation performed at the PS facility.
 - 24-GeV protons.
- Sets of 4 sensors

$$\begin{array}{c} \text{2 PINs} \\ \text{2 LGADs} \end{array} \right\} \begin{array}{c} \text{1 from W1 or W2} \\ \text{\&} \\ \text{1 from W3 or W4} \end{array}$$

- Fluences:
 - 10¹² 1 MeV n_{eq}/cm²
 - $10^{13} 1 \text{ MeV } n_{eq}/\text{cm}^2$
 - $10^{14} 1 \text{ MeV } n_{eq}/\text{cm}^2$
 - 10¹⁵ 1 MeV n_{eq}/cm²

References

• 1 MeV $n_{eq}/cm^2 \equiv 1.6 \text{ p/cm}^2$

Multiplication layer dose:

- \bullet W1 and W2: $1.8 \times 10^{13} \text{ cm}^{-2}$
- \bullet W3 and W4: $2.0 \times 10^{13} \text{ cm}^{-2}$

CV/IV curves (after irradiation)

Introduction

Measurements before irradiation Measurements after irradiation

Index

- Introduction
- Measurements before irradiation
 - CV/IV
 - TCT+
 - Sr-90 source measurements
 - Gain

- Measurements after irradiation
 - Irradiation campaign
 - CV/IV
- Microstrip LGADs
- Conclusions
- 6 Future steps

Microstrip LGADs (before irradiation)

Objective:

Compare microstrip LGADs and PINs.

Measurement

Red back TCT (e⁻ injection).

Authors:

A. Diez, R. Jaramillo, I. Vila. IFCA - Universidad de Cantabria

Microstrip LGADs (before irradiation)

Observations

- Wider TCT pulses with respect to the PINs.
- Charge increases with voltage.
- Waveform clearly shows the drift sequence for electrons and holes.

Multiplication on-set

Microstrip LGADs (before irradiation)

Observations

Charge collection

- for the PINs it stabilises after depletion.
- for the LGADs it continues increasing.
 - \hookrightarrow The higher the voltage the higher the multiplication.

Index

- Introduction
- Measurements before irradiation
 - CV/IV
 - TCT+
 - Sr-90 source measurements
 - Gain

- Measurements after irradiation
 - Irradiation campaign
 - CV/IV
 - Microstrip LGADs
- Conclusions
- 6 Future steps

Conclusions

- LGADs from CNM run 7859 were analysed.
- There were samples with two different multiplication-layer implant doses:
 - $\bullet~1.8\times10^{13}~\text{cm}^{-2}$
 - \bullet $2.0 \times 10^{13} \ cm^{-2}$
- CV/IV curves before and after irradiation are as expected (in most cases).
- TCT+ results before irradiation:
 - ullet Charge collection curves for $1.8 imes 10^{13} cm^{-2}$ LGADs are as expected.
 - Abnormal charge collection behaviour in on of the PINs from W1. 🚹
 - For IR back and red front
 - \hookrightarrow Both 2.0 \times 10¹³ cm⁻² LGADs and PINs show a difference in charge collection between wafers (W3 and W4). \triangle
 - Homogeneous charge collection before irradiation.
- Sr-90 source measurements are as expected.
- Gain values for TCT IR back and Sr-90 differ greatly. 1
- Wafers 3 and 4 (same multiplication layer dose) present different gains for TCT IR back and red front.
- Microstrip LGADs behave as expected before irradiation.

Index

- Introduction
- Measurements before irradiation
 - CV/IV
 - TCT+
 - Sr-90 source measurements
 - Gain

- Measurements after irradiation
 - Irradiation campaign
 - CV/IV
- Microstrip LGADs
- Conclusions
- 6 Future steps

What comes next?

- TCT+
 - Verify homogeneity after irradiation.
 - Study charge profile.
 - Compare to the charge profile of irradiated PIN diodes.
 - Calculate gain after irradiation.
- Sr-90
 - Analyse charge collection after irradiation.
- Microstrip LGADs
 - Continue with their study before and after irradiation.

Thank you

Backup Slides

Foot voltage vs fluence

After irradiation defining the foot voltage is not trivial.

Multiplication layer dose	$1.8 imes 10^{13}~\mathrm{cm}^{-2}$	$2.0 imes 10^{13} \; \mathrm{cm}^{-2}$	
Fluence (1 MeV n_{eq}/cm^{-2})	Foot voltage (V)		
10^{12}	30	30	
10^{13}	30	30	
10^{14}	25	30	
10 ¹⁵	20	25	