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Overview

Introduction, setup and samples
TCT waveforms
Charge profiles
Collected charge
Depletion width
Effective space charge

 Neutron-only measurements (see: M. Fernandez et al., 26th RD50 meeting Santander) 
have been complemented by proton irradiated samples and additional analysis in this 
presentation

See also: M. Fernandez et al., “Radiation hardness studies of 
neutron irradiated CMOS sensors fabricated in the ams H18 high 
voltage process”, Nov. 2015, submitted to JINST

M. Fernández – CERN - 27th RD50 workshop – December 2015 

https://indico.cern.ch/event/381195/session/6/contribution/37
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HVCMOS
 HVCMOS use commercial high-voltage CMOS technology as sensors on a low resistivity 
substrate (≤120V, ρ~10 Ω ⋅cm). 

Expected 10 µm depletion at 100 V → Charge can be collected by drift.
Expected 900 e-h pairs → built-in preamp is needed.

 To avoid damage to transistors both, NMOS and PMOS are “embedded” in a Deep N 
Well (DNW) . NMOS+PMOS  any complex signal processing can be implemented 
inside. The DNW works both as a substrate for transistors and as the signal collection 
region. Nearly 100% fill factor:

In this presentation we study radiation hardness of test chips on the 
ams H18 High Voltage CMOS process.

– Charge carriers do not have to travel long before being collected → reduced 
trapping impact.
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Setup and samples

 Measurements at CERN-SSD TCT+ setup. 
Edge-TCT configuration, 1064 nm (~200 ps), 
T =  – 20 °C.

 Standalone test diode connected to amplifier 
(no NMOS or PMOS inside test diode).

 Detector glued to simple edge-TCT PCB using 
conductive glue.

 1 detector per fluence. Three fluences for 
neutrons, three for protons:

Neutron
(Lbj)

1 7 20

Protons
(PS)

1.4 3.7 6.9
×1015 n

eq
/cm2

M. Fernández – CERN - 27th RD50 workshop – December 2015 

Test
diode
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Waveforms (protons)
 Higher amplitude and collection time (related to depletion depth) for 1.4 ×1015 neq/cm2.
   Then decreasing for the 2 higher fluences. 
 Both amplitude and tcoll are still higher than the unirradiated sample.
 Charge produced within space charge region is collected within 5 ns.

M. Fernández – CERN - 27th RD50 workshop – December 2015 

(- 80 V, -20 
C,@center of 
depleted region)

2D scan of the detector 
used to locate position of 
the diode

X centerX center
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Running charge: drift vs diffussion (protons)
Unirradiated: quick “rise” (=drift), then slow accumulation (=diffusion)
Irradiated: quick rise, then constant. No diffusion

M. Fernández – CERN - 27th RD50 workshop – December 2015 

2D scan of the detector 
used to locate position of 
the diode

Bulk

X centerX center
X +30 X +30 µµmm

T=-20 C

Cable reflection
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2D scan of the detector used to 
locate position of the diode

Bulk

DNW

Charge profiles Q(z)   (protons)

 Plotting charge (collected in 5 ns) as a function of position, towards the bulk of the 
detector. Profiles have been shifted such that raising edge coincides, for comparison 
purposes.
 For the measured fluences, more charge collected after 1.4 ×1015 n

eq
/cm2, then decreases as 

fluence increases. At ~7×1015 n
eq

/cm2 it is still wider than the unirradiated detector.

 Next: summing all the charge in 200 µm (similar to MIP crossing the detector)

M. Fernández – CERN - 27th RD50 workshop – December 2015 

X
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Collected charge / unirradiated (protons)

 Collected charge (CC) calculated over 5 ns and summed over 200 µm along the “center 
line” of the detector. For each bias, CC is referred to unirradiated detector.
 CC for 1.4×1015 n

eq
/cm2 is ×8 the unirradiated !

M. Fernández – CERN - 27th RD50 workshop – December 2015 
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Collected charge (neutrons and protonsprotons)

 Collected in 5 ns, over 200 µm. Showing 3 different voltages. 

 Fluence range 1-1.5 ×1015 neq/cm2, very fast increase of collected charge

Charge of 
unirradiated 
at 80 V is 
defined as 1

M. Fernández – CERN - 27th RD50 workshop – December 2015 
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S
ca

n
z

Depl. 
bulk

Laser
σ=10 µm

Spatial resolution in edge-TCT
Geometrical simulation:

 The depleted volume of the detector is modeled as a box with a 
width representing the depth of the depleted region.

 Across the box detector is fully efficient for charge collection
   Outside the box no charge is collected.

 Charge collected = convolution of gaussian with box.
    Depleted depth   = FWHM of charge profiles. 

 Our laser for these measurements: σ=10 µm

M. Fernández – CERN - 27th RD50 workshop – December 2015 

Simulated
thickness

Beam width

Reconstructed
thickness
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Spatial resolution in edge-TCT

 Simulated FWHM (10 Ω⋅cm bulk) 
versus bias voltage, for different laser 
beam widths (σ).

 FWHM(~0V) is not zero [no diffusion 
or built in voltage were simulated here, 
only geometry!]

 Very narrow beam (σ∼1 µm) needed 
 to accurately resolve depletion depth in 
low resistivity bulk (→ Advantage of 
Two Photon Absorption-TCT)

 Difference between the simulated 
and theoretical depletion thickness, as 
a function of the simulated (that is, 
observed) value.

 For  σ=10 µm, real depletion width 
must be above ~35 µm if we want to 
take FWHM from edge-TCT as the size 
of the depletion region.

M. Fernández – CERN - 27th RD50 workshop – December 2015 
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Depleted width (neutrons and protonsprotons)

 FWHM of Q(z ; 5ns) distributions (T=-20C) in a vertical scan along the center of the detector
 Depleted width is maximum at 1.5 ×1015 neq/cm2 (p). 
   Then decreases but always bigger than the unirradiated sample

M. Fernández – CERN - 27th RD50 workshop – December 2015 

edge-TCT 
(σ=10 µm) 

spatial 
resolution
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Methods for space charge calculation

FWHM V =d 0 20qN eff

V
N eff=

20
q⋅FWHM 2 V

Measured FWHM

σ
FWHM

1) No correction: use σ
Neff

 as uncertainty for N
eff

2)  Use σFWHM to correct measured data:

FWHMcorr= FWHMmeas  - σFWHM

 As proposed by Ljubljana group
[G.Kramberger, I. Mandic, 26th RD50 meeting, Santander]

 N
eff

 calculated from a fit of 

measured FWHM versus voltage.

 Parameter d
0
 introduced to account 

for FWHM(0)≠0. Reasons being: 
width of laser, built-in voltage, 
contribution of diffusion.

 Note that calculated N
eff

 values will 

have the value of w0 already 

discounted: FWHM' ≈ FWHM - d0

 Assuming abrupt junction. N
eff

 calculated for 

each bias using measured FWHM.

M. Fernández – CERN - 27th RD50 workshop – December 2015 

Correction by laser width Fit method

 Measured FWHM also used to estimate error 
in depleted thickness:

 Two options:

Neff=
40
q

⋅
VV b

FWHM 3 FWHM

https://indico.cern.ch/event/381195/session/0/contribution/12
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Method 1: using simulation
N eff=

20
q⋅FWHM 2 V

M. Fernández – CERN - 27th RD50 workshop – December 2015 

Neff=
40
q

⋅
VV b

FWHM 3 FWHM
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1.1) Effective space charge (data not corrected)

N
eff

(Φ
eq

=0)=1.825e14 cm-3 → ρ0=76 Ω  [nominal was 10 Ω]

M. Fernández – CERN - 27th RD50 workshop – December 2015 

 Neff calculated from FWHM. Simulation used to estimate error bars σ
Neff
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1.1) Space charge change with fluence (not corrected)

 g
p
: Introduction rate for protons needs to be left free

 Due to the low number of measurements, the minimum of acceptor removal for 
neutrons seems to happen much later in fluence

M. Fernández – CERN - 27th RD50 workshop – December 2015 

Fits: Nc(Φ) = Neff,0 + Nc0(1-e-cΦ) + gΦ

neutrons protons
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1.2) Space charge change with fluence (corrected data)

 Measured FWHM was corrected by simulation: FWHMcorr= FWHMmeas - σFWHM

 g
p
 and gn need to be left free

 Calculated initial resisitivity ~15 Ω ⋅cm (nominal was ~10 Ω ⋅cm). Neff calculated at 80 V
M. Fernández – CERN - 27th RD50 workshop – December 2015 

Fits: Nc(Φ) = Neff,0 + Nc0(1-e-cΦ) + gΦ

ρ0=15 Ω [nominal was 10 Ω]

neutrons protons
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Method 2: Neff from fit

FWHM V =w0 20qN eff

V

M. Fernández – CERN - 27th RD50 workshop – December 2015 
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 The term d
0
 in the fits ranges between 7-30 µm (neutrons) and 25-50 µm (protons)

 This method is more robust than method 1, since it uses data from all bias to calculate N
eff

. 

Neutrons Protons

FWHM fits

M. Fernández – CERN - 27th RD50 workshop – December 2015 
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Space charge change with fluence (fit method)

 Lowest value of space charge happens after ~1015 (2×1015) n
eq

/cm2 for protons (neutrons)

 Initial resisitivity ~5 Ω ⋅cm (nominal was ~10 Ω ⋅cm)
M. Fernández – CERN - 27th RD50 workshop – December 2015 

Nc(Φ) = Neff,0 + Nc0(1-e-cΦ) + gΦ

ρ0=5 Ω  [nominal was 10 Ω]

n
eu

tr
o

n
s

p
ro

to
n

s
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Comparison of calculated Neff

Fit method 

Correction by simulation

 Corrected N
eff

 using simulation leads to lower space charge than Neff extracted from fit
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Conclusions

 Measured 7 different HVCMOS test diodes realized as deep N-wells on low resistivity Si. 
One detector not irradiated. Three were irradiated to (1, 7, 20) ×1015 n

eq
/cm2 (neutrons), the 

other three to (1.4, 3.7, 6.9) ×1015 n
eq

/cm2 (protons).

 In HVCMOS the amount of collected charge is increasing with radiation!
  For neutron irradiated 7 ×1015 n

eq
/cm2 the collected charge doubles. 

      For protons 1.5 ×1015 n
eq

/cm2 collected charge is 8 times bigger !!!!

    After 2 ×1016 n
eq

/cm2 collected charge is similar to unirradiated (trapping, too many defects)
    Fast changes with fluence. Carefully choose position of sensor in experiment.

 Space charge was calculated using 2 different methods

M. Fernández – CERN - 27th RD50 workshop – December 2015 

1) Using a geometrical simulation, measured FWHM is corrected by the width of 
the laser. 
2) From a fit of measured FWHM vs voltage, where the FWHM(V=0) is substracted 
from the data.

 To sample the fast rise of charge with fluence, measurements with neutrons and protons 
at lower fluence are needed!!!

Both methods yield an initial resistivity compatible with nominal and show a 
deactivation of doping with fluence.
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“I don't want to achieve immortality through my work; I want to achieve immortality through not 
dying” (Woody Allen)

ChristianChristian

Joaquin

LauraLaura

CelsoCelso

EstebanEsteban
MichaelMichael

HannesHannes

Julien
Julien

MarcosMarcosIsidre
Isidre

Sofia
Sofia

and more...

Christian&Joaquin: we hope your setups and DAQ stay immortal, so we don't need to fix them...
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BACKUP
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edge-TCTedge-TCT

IR topIR top Red topRed top

IR IR 
bottombottom

Red Red 
bottombottom

Sample holder Sample holder 
& cooling& cooling

CERN-SSD TCT+
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Charge 
does not 
decrease

Signal color map: V(t,z)
Problem: Collected charge Q(z) for 2 
highest fluences (4e15 and 7e15 
neq/cm2) does not start at 0. This 
“pedestal” extends for ~10 um. However 
1.5e15 starts from Q(z)~0. 
Strange: redo these measurements.

[seen as well for 0 C]

T=-20C
-80 V

/home/mfg/hpk/papers/nHVCMOS/eps/plotQt_unirrad_irrad.C
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Proton only

CCE_vs_Fluence.C

Neutron only
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Neutron

Proton

CCE_vs_Fluence.C
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Estimation of Neff error
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