

LGAD and Irradiated doping Profiles

SiMS Measurements & Simulations

V. Gkougkousis^{1,2}

A. Lounis^{1,2}, C. Nellist^{1,2}

- 1. Laboratoire de L'accélérateur Linéaire
- 2. Université Paris-SUD XI

Overview

Introduction

Reminders

The SiMS-Simulation Calibration project & Irradiations

SiMS Principles

Calibration and Uncertainties

Depth and dose Quantification

p-spray samples

Irradiated Profiles

Radiation effect on total dopant

LGAD SiMS

CNM Boron Run

Measurements and Simulations

LGAD Gallium Gallium Simulation and SiMS

Expected profiles and comparison

Future plans

Irradiation and Gallium projects

Test productions and JIS Irradiation Campaign

Conlusions

Radiation effect, LGAD SiMS- Simulation

Reminders

SiMS – Simulation Calibration Project & Irradiations

A simple production with known process parameters

No masks or lithographic steps

- Samples for n and p implant at the most common doses
- Investigate simulation-SiMS agreement
- Very good agreement, exceptional for p-samples

VTT P-type wafers, Non-Etched

- 1. Investigate doping profile effect after irradiation
- 2. 10¹⁶ @ 25GeV protons at KIT
- 3. No visible effect in nimplanted samples
- 4. P-implant (boron?)

CiS Low Res, 10¹⁵cm⁻², SiMS, no oxide

SiMS Analysis Principles

Depth & quantification and uncertainties

- Typically several elements related to the technology are monitored
- Scattered Ion intensity is recorded vs Time
- In an interface region (change of "matrix") extraction work abruptly changes
- This potential difference leads to a @Diraclike" effect
- Approximated by a Narrow width Gaussian because of atomic layer mixing
- Layer transition point and uncertainties calculated by Gaussian fit on first derivative

SiMS Analysis Principles

Implanted dose Quantification

Each measurement is different and needs to be separately calibrated

- 2. Dedicated samples with known profiles are included
- 3. Calibration Sample needs to have the element of interest <u>implanted</u> on the same material as the probed <u>sample</u>
- 4. In case of several dopants, on sample is include for each dopant
- 5. Signal integrals are used and a global factor is estimated for each analytre
- 6. Calibration samples are of a single matrix (our case only Si)

Radiation effect and equivalent damage

- Two p-spray samples where selected
- Equivalent non-ionizing energy loss for 25GeV protons with respect to neutrons is 1/2.5
- Total delivered dose is 5*10¹⁵ protons/cm²
- At 25MeV, stopping power is 10.85keV/μm, assume constant energy for the 5 first μm of the sample
- Samples were annealed, this should have no effect on total dopant but on active

Does the profile Change???

P-Spray Irradiated Samples						
Dose	Energy	Screen Oxide	Fluence	Implnat		
6 • 10 ¹² cm ⁻²	00101	200000	10 ¹⁶ n /one ²	¹¹ ₅ B		
3 • 10 ¹² cm ⁻²	90keV	300nm	$10^{16} n_{eq}/cm^2$	₅ B		

3 • 10¹²cm⁻² @ 90KeV implanted sample

- A slight reduction in the total integrated dopant is observed
- Within statistical uncertainties

Implanted Dose in Silicon					
	d [atoms/cm ²]	$\delta d [atoms/cm^2]$			
Brefore Irradiation	1,95E+12	9,74E+11			
After Irradiation	1,66E+12	6,46E+11			
Reduction	15%	54%			

6 • 10¹²cm⁻² @ 90KeV implanted sample

Implanted Dose in Silicon					
	d [atoms/cm ²]	$\delta d [atoms/cm^2]$			
Brefore Irradiation	2,58E+12	1,11E+12			
After Irradiation	2,05E+12	8,51E+11			
Reduction	21%	47%			

- A more pronounced dopant reduction is observed for the higher concentration
- Uncertainties estimation could still account for the effect

Possible Effects

A possible Nuclear Reaction??

$$^{11}B + p \rightarrow ^{12}C^* \rightarrow \alpha_0 + ^8Be \rightarrow \alpha_0 + \alpha_{01} + \alpha_{02}$$

$$^{11}B + p \rightarrow ^{12}C^* \rightarrow \alpha_1 + ^8Be^* \rightarrow \alpha_1 + \alpha_{11} + \alpha_{12}$$

$$^{11}B + p \rightarrow ^{12}C^* \rightarrow \alpha_2 + \alpha_3 + \alpha_4$$

$$^{11}B + p \rightarrow ^{12}C^* \rightarrow ^{12}C + \gamma$$

Description	Cross-section		
Reaction	σ (mb)	δσ (mb)	
$^{11}B \rightarrow {}^{7}Be$	20	3	
$10B \to 11C$	45	5	
$10B \rightarrow 7Be$	22	5	
$10B \to 10C$	0.1		
$^{11}B \rightarrow ^{11}C$	38	estimated	

• Accounting for the total cross-section and the real proton fluence, the effect should be of 1%!!!!

LGAD Doping profiles

The structure

- 1. Jointly designed mask with CNM to accommodate for SiMS limitations
- 2. 6 individual regions:
 - L1 P-Stop, C-Stop Well
 - L2 P-Well (P Multiplication)
 - L3 JTE
 - L4 N-Well
 - L4 + L2 N-Well over P-Well
 - L4 + L3 N-Well over JTE
- 3. September Run that was delivered in February

Boron Run 7859 – P Stop

- P-Stop Boron Implant at the initial steps of the process
- The implant extends 3.5µm in the silicon substrate
- An initial oxide layer was used as screen while at least two subsequent thermal oxidations are apparent
- Nitride and metal layers are on top of the sample.
- Total thickness of surface layers is around 1.5μm
- A carbon diffusion is observed at the initial screen oxide, possibly from the preceding mask

Nitride Passivation

Screen Oxide

SiMS Metal Layer

Boron Run 7859 - P Well

- Implant extends 2.7µm inside the silicon substrate
- It is performed in a later stage, after the p-stop implantation
- Same peak concentration as the pstop implantation
- Depth Uncertainties are extremely higher due to analogical deduction of abrasion speeds, depth measurement is missing
- The same carbon diffusion on the screen oxide is observed, perhaps environmental pollution
- At least one thermal activation step

Boron Run 7859 – JTE, deep N-implant

Boron Run 7859 – N Well over P Well and N+JTE

- Superimposed implantations
- In the n+p case, the n-implant concentration of the multiplication region is three orders of magnitude higher than that of the p-implant
- Shallow n-implant extends $1\mu m$ inside substrate, p is diffused to $2.5~\mu m$
- In combined p-implant case, doping profile is somehow constant in the first 3μm
- More care has to be taken for a smooth doping transition at the initial stages of the curve

LGAD Gallium Simulation

Gallium Run - P Well

- Gallium implantation 1.4e13/cm² at 60keV
- No gallium in the substrate
- Simulation and SiMS agreement

Boron Run 7859

- Preliminary results indicate a reduction of the total dopant in the order of 15%-20%
- The effect is more pronounced in higher concentrations
- More doses and fluences are to be studies
- Statistical Uncertainties may partially account for the result
- More accurate simulations on gallium confirms observed SiMS effect

PLans

- P-spray samples also under irradiation in Lubiana with neutrons
- SiMS measurements to be repeated, especially on non-irradicated samples
- Same study to be repeated on LGAD p-implanted test structures

16

We are not over yet...