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n Principle of wire correction
n Wire embedded in collimators

¨Optics, wire distance and current 
n Experimental conditions, observables and 

associated instrumentation needs
n SPS wires status
n Discussion



Wire compensation
n Considering round beams and crossing in both planes, 

the BBLR kicks are

with
n For an “infinite” round wire, the kicks are

with
n For cancelling the effect for any position (large 

separations)
n This gives 5.5 Am/encounter for the nominal LHC and 

10.6 Am for HL-LHC
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Basic considerations
n Locality of the compensation

¨ Close to the BBLR encounters which occur at ~π/2 from either IP side
¨ A lot of space available between D1 and TAN but integration is difficult (idea of e-lens)
¨ Phase advance still close to π/2 even up to Q5

n Optics considerations
¨ Large beta functions for efficient tune-shift compensations
¨ The optics functions equality is not optimal for resonance driving term compensation

n Ratio of 2 or ½ is optimal for HL-LHC

n The absolute criterion should be non-linear compensation 
¨ Increase of Dynamic Aperture through combined reduction of non-linear resonances and 

tune-spread

30/11/2015 Y. Papaphilippou - BBLR 2015 workshop 4

J.P. Koutchouk, 2001

S. Fartoukh et al., PRSTAB, in press



Two wires per IP
n Integrated current can be reduced for the same correction reach
n Due to optics anti-symmetry and different plane crossing, effect of two 

wires in the two planes is also anti-symmetric (if placed in symmetric 
locations wrt to the IP)

n Powered independently to fit better the integrated kick on either side
n Beam 2 is presently considered being the one equipped with the test halo 

diagnostics (coronograph)
¨ Are there any other constraints preventing this choice?
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Optics at wire locations
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n IR1: Vertical TCT will be replaced with wire-embeded collimator and new TCL 
installed downstream of Q4 (beam 2), as location next to D2 quite crowded

n Optics not close to anti-symmetric especially for the small corresponding β



Optics at wire locations
n In both IR1 and 5, wire location to almost π/2 from IP 

(max deviation of 2.5ο)

n For IR5, β-function ratios of around 0.36-2.61, almost 
anti-symmetric

n For IR1, β-function ratios of around 2.48-0.16, far from 
anti-symmetric

n Both optics are likely far from optimal β-function ratio

¨ Around 1.7-0.6 for nominal LHC

n Optics adjustments are desirable for the experiment, at 
least for left side of IR1 

S. Fartoukh et al., 
PRSTAB, in press
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Wire-beam distance
n For strict optics anti-symmetry (round optics), and for equal wire currents 

matching the number of long range encounters (~90A for the nominal 
LHC), physical distance of wire to the beam should be the same (but not the 
normalised one)

n This is independent on the resonances corrected
n For the “ideal” aspect ratio (2 and ½ for HL-LHC), all resonances are 

corrected with the same wire distance to the beam
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Wire-beam distance
n Distance of wire for the test depends on 

optics at that location
¨ For ideal aspect ratio (modified optics), a 

unique distance at either side cancels all 
LR driven resonances 

n The wire center is positioned at around 
2.8 mm from the collimator jaw edge, 
corresponding to around 2.6 - 4.3 σ
(0.4m-β* optics @ 6.5 TeV, for the 
almost symmetric locations and 3.75 
µm emittance)

n For nominal TCT-TCL collimator 
settings (~9.5 σ), the wire position will 
be at 12.1 σ for high-β aspect ratio, and 
at 13.8 σ for low-β aspect ratio

A. Bertarelli



Wire-beam distance
n An optimal aspect ratio optic can 

reduce it by ~1 σ, but still far from 
average beam-beam separation of 10 σ

n At the nominal separation, lifetime is 
not dominated by BBLR, so wire tests 
should be done while reducing the 
crossing angle (TCT settings can be 
slightly relaxed)

n In conclusion, from one side the wire 
location is not an issue but from the 
other side, the internal collimator jaw 
should be pushed towards ~ 6 σ

n This may be a machine protection 
issue, apart from pilot beams A. Bertarelli



Current vs. wire distance
n The effect of the wire or BBLR (RDTs or tune spread) is linear 

with integrated current but scales as the inverse wire distance to 
the beam to a power equal to the resonance order, i.e.

n If the optics and layout conditions (β-aspect ratios, wire 
distance,…) cannot be met,  wire currents and distances, should 
be used for cancelling the LR leading order effect, i.e. octupole-
like tune-spread

n Wire distance is scaled as the inverse 4th power, so the max wire 
current (~350A), can be used to relax the wire distance by 40%

cp,q / IL

dp+q
W



Experimental set-up - Train composition
n “Strong” (non-compensated) beam1  composed by nominal 25ns 

trains with sufficient number of bunches to cover all long ranges, i.e. 
with at least (16x2)+1 = 33 bunches, neglecting the long-ranges inside 
D1
¨ Usual train with 72 bunches from PS covers all long ranges even inside D1

n “Weak” (compensated) beam2 composed of (at least 4) single 
bunches,  with 
¨ Low intensities (pilots), allowing the wire to approach in “optimal” 

distance
¨ Large emittances, for enhancing the effect on the tails
¨ One bunch positioned by e.g 12.5ns from nominal bucket for avoiding 

HO
¨ One bunch on nominal bucket for testing the effect with HO
¨ One “PACMAN” bunch positioned in a way to receive only half LR 

kicks
¨ One non-colliding bunch  (not HO nor LRs) for reference

n Beams should be initially separated in IP2 and 8
n Colliding in only 1 IP can be used to test correction separately



Experimental set-up - conditions
n Optics need to be adjusted at least for new collimator 

in IR1, but also modified optics with optimal aspect 
ratio should be considered
¨MD time for optics validation already during 2016

n Effect is weak with nominal crossing angle, so 
reduction is necessary
¨Sufficient time to long range MDs should be given for 

quantifying the effect
n Doing the tests at injection energy should be also 

considered
¨Large gain in time and machine protection restrictions
¨Optics conditions are not optimal for enhancing the long 

range effect (squeezed optics)



Main observables
n Lifetime (bunch-by-bunch)

¨Need simulations to benchmark the experiments, i.e. track 
distributions with BBLR + compensation

¨Disentangle BBLR with respect to other effects such as head 
on, burn-off, vacuum, IBS, noise,… (on going work of F. 
Antoniou for LHC luminosity modelling)

n Tails evolution
¨Losses on different collimator positions
¨Halo diagnostics

n Beam transfer function 
¨Damper effect?

n Orbit, tune, tune-spread (coupling, chromaticity)
¨Last three are difficult to measure, while in collision
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Wire effect in single  beam
n Need to benchmark effect of wire 
n Calibrate position and current with observables:

¨Orbit, tune, tunes-spread, coupling (alignment), 
resonance driving terms, effect on distribution (tails)

n Could be done even at injection energy and 
conditions (only 1 beam)
¨Experimental conditions and instrumentation as for LHC 

optics measurements
n BPMs in orbit and TBT mode, BSRT, wire scanners, Q-Kicker, 

AC-dipole, etc… 
¨A lot of information can be already gained with existing 

wires in SPS
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Wires at SPS
n Two 60cm long 3-wire 

compensators installed 
in the CERN SPS 
¨ Different “crossing” 

plane and even @ 
45deg

n Movable in vertical by 
+/- 5mm (remote 
controlled)

n Water cooled 

n Powered with integrated DC current of up to 360A m (~60 
LR collisions in LHC)

n About equal beta functions in the transverse planes (~50m)
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Wires at SPS
n Set-up re-evaluated

¨ New power convertor able to 
pulse in PPM mode Powering 
H or V wire, with a switch

¨ Step motors verified and 
controller in good shape

¨ Vacuum integrity checked
¨ Fine tuning of the PC 

performed during this 
summer (interlock, polarity 
switch)
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n MDs for benchmarking wire models
¨ At SPS flat bottom in parallel MD cycle (single LHC-type bunches)
¨ Beam brought close to the wire with closed bump (already checked)
¨ Effect of wire on orbit, tune, tunes-spread, coupling (alignment), 

resonance driving terms, beam distribution (tails)



Optics at the SPS wires
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n Q26 optics (nominal for 
FT beam)
¨βx ~53m, βy ~45m, Dx~-
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SPS wire calibration
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n Q26 optics (nominal for 
FT beam)
¨βx ~53m, βy ~45m, Dx~-

0.65m

n Q20 optics (nominal for 
LHC beam)
¨βx ~63m, βy ~55m, Dx~-

0.75m

y  orbit  
change

y  tune  
change

x  tune  change

F. Zimmermann et al.
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Questions for discussion
n Is beam 2 the final choice?

¨ Beam instrumentation and machine protection considerations
n Optics adjustments (full or partial)

¨ Are they possible? Can we schedule them already in 2016?
n Wire-collimator installation schedule

¨ Is it possible to install even one wire-collimator during a technical 
stop in 2016, allowing wire calibration MDs earlier then the full 
installation 

n Wire tests at injection energy
¨ Do we have an experimental set-up where the LR effect can be 

enhanced at injection (e.g. squeezed optics for weak beam)
¨ Is injection energy good for halo measurements

n Beam intensity of the week beam
¨ Are pilot bunches enough for all type of measurements, in particular 

halo, losses, lifetime, BTF,…
¨ Is there a possibility to move the jaws further close to the beam for 

higher intensities



Back up slides
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Orbit effect due to wire
n The wire induces an orbit shift due to a “dipole” kick 

expressed as

and

n For only horizontal or vertical positioning of the wire, 
there is only an orbit kick in the corresponding plane

n In either side of the IP, powering the wires accordingly 
(opposite sign and with current following the square 
root of beta functions ratio), orbit effect (π-bump)
¨To be used for calibration purposes
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Coupling due to wire
n The minimum tune-split due to wire-induced coupling 

is

n If the wire is positioned in one plane, there is no 
coupling

n Maximum coupling is induced for φW=45o, giving 
around 6e-3 tune-shift for wire in BBC position

n Global coupling can be cancelled, between wires in the 
two IPs , if wire is positioned in complementary phase 
φW=135o, in the opposite IP (and current follows square 
root of the product of beta functions)
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Tune-shift due to wire
n The linear tune-shift induced by a wire is expressed as

n Equal beta functions in both planes chosen for having the same 
impact in both planes (BBC location)

n Induced tune-shift between wires in two IPs cancelled, if wire is 
positioned in equal distance but different planes, and integrated 
current follows beta function change
¨ Alternating crossing idea for cancelling BBLR tune-shift

n For equal distance of the wire in both planes at the same IP 
(φW=45o), tune shift is suppressed (true also for BBLR)
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Tune spread due to wire
n The first order tune-spread (octupole-like effect) is

n For alternating crossing in optically symmetric IPs, tune-
spread adds up (same polarity)

n It can be cancelled for wire angle (or crossing) at π/8
n Because of triplet optics symmetry, diagonal terms of 

anharmonicity matrix for BBLR are equal
¨True also for the effect of two wires placed symmetrically in 

either side of the IP
n Ratio of beta functions at wire position can be chosen as 

to cancel completely tune-spread
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Resonance driving terms
n The first order resonance driving terms are

n For phase advances

n Due to the IP optics anti-symmetry, the contribution 
to purely H/V even resonances, from either side, is 
symmetric
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