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OutLine

The studies aim on investigation of transport map of the straight
current-carrying wire, implementation of this map into SixTrack
code and application of the code for LHC.

Outline:

The model:

I. Field of straight current wire; II. and III. Particle interaction with
wire’s field and the first order transport Map.
IV. and V. Wire element Implementation in SixTrack and its
Verification.
———————————————————————–

Applications: Long-Range compensations in LHC:
I. Wires at BBC locations

II. Wires at TCT locations (last info)
results - DA and tune footprints
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I. THE FIELD. Straight current-carrying wire

The wire element of length L centered in Cartesian system :

Z

Y X

L/2

−L/2

φ θ

Direction cosines of the wire in
the shown system can be expressed through φ and θ as:

cos(cx) =
tg(φ)√

(tg2(φ) + tg2(θ) + 1)
(1a)

cos(cy) =
tg(θ)√

(tg2(φ) + tg2(θ) + 1)
(1b)

cos(cz) =
1√

(tg2(φ) + tg2(θ) + 1)
(1c)
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I. THE FIELD. Field of straight current-carrying wire -
generic formula

From BiotSavart law (in SI): A = Iµ0

4π

∮
dl
r

with parametrization of the line through direction cosines and parameter t in range of [−L/2, L/2]:
r =

√
(z − cos(cz)t)2 + (x− cos(cx)t)2 + (y − cos(cy)t)2

dl = i ∗ cos(cx)|dl| + j ∗ cos(cy)|dl| + k ∗ cos(cz)|dl|

The generic formula for vector potential of straight wire with length L:

A(x, y, z)i =
Iµ0cos(ci)

4π
∗ (asinhL/2− a√

b− a2
− asinh−L/2− a√

b− a2
) (2)

where: index i is x, y, z; a = xcos(cx) + ycos(cy) + zcos(cz) and
b = x2 + y2 + z2;
3D image of function (2) (z >> x, y):
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I. THE FIELD. Field of straight current-carrying wire

For the wire with length L=1: Az as a function of R =
√
x2 + y2 and Z:

and as a function of Z (R=0.001):

1. In blue: for the wire
// OZ (cx = cy = 900;
cz=0)
2. In red: cx = cz = 450;
cy = 00;
bars - for logarithmic
potential (inf. wire)
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II. PARTICLE DYNAMICS. Hamiltonian

Hamiltonian in SixTrack:

−
√
β0

2 ps2 + 2 ps − (py − ay)2 − (px − ax)2 + 1 + ps − as
The Hamiltonian is parameterized by s (longitudinal coordinate) as
independent variable (instead of t); ay, ax, as - normalized component of
vector potential (ai = eAi/P0); ps =

E−E0

β0P0c
; pi = Pi/P0 .

In case of transverse field: ax = ay = 0;
H = Hdrift +Hkick and Hkick = −as.

a = a(x, y, s) − > a(x, y, 0) =
∫
a(x, y, s)δ(0)ds - thin lens

approximation

a = a(x, y, s) − > a(x, y, s1, s2) =
s2∫
s1

a(x, y, s)ds - in

general...”integrated field”
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II. PARTICLE DYNAMICS. The wire element kick - thin
lens

Hamiltonian H = −µ0I
2π asinh(L/2

√
x2 + y2):

xn = x (3a)

pxn = px −N1
xL2

(y2 + x2)
3
2

√
L2

4(y2+x2) + 1
(3b)

yn = y (3c)

pyn = py −N1
y L2

(y2 + x2)
3
2

√
L2

4(y2+x2) + 1
(3d)

zn = z (3e)

psn = ps (3f)

where: N1 = µ0Ie
4πP0
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II. PARTICLE DYNAMICS. The wire element kick -
”integrated kick”

Hamiltonian H = − Iµ0

4π ∗ (asinh
L/2−z√
x2+y2

− asinh−L/2−z√
x2+y2

):

xn = x

(4a)

pxn = px −N1
x

R
[
√

((Lemb + L)2 + 4R2)−
√
((Lemb − L)2 + 4R2)]

(4b)

yn = y
(4c)

pyn = py −N1
y

R
[
√

((Lemb + L)2 + 4R2)−
√
((Lemb − L)2 + 4R2)]

(4d)

zn = z; pzn = pz
(4e)

where: N1 = µ0Ie
4πP0

; R = x2 + y2; and L - the length of the element;
Lemb - integration length (embedding drift).
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II. PARTICLE DYNAMICS. Thin lens vs. ”integrated kick”

Example: wire of L=1; R=0.1: Thin lens kick is proportional to area
of red rectangular
”Integrated kick” - area under the blue curve - includes ”fringe filed”:

NOTE: if R/L− > 0 both cases are equivalent and the ”kick” is prop. 2L
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III. TRANSPORT MAP. The first order transport Map for
thin element

Element length L (+ Lembedding ):

1. Definition of Shifted variables: :
(xi− >x−DX yi− >y −DY ) DX,DY - wire shift
2. Rotation for 4 canonical variables (xi,px,yi,py) on angles TX,
TY (as defined in Beam dynamics, 1998; E. Forest)

3. Wire element kick (slide 8)
4. Backward Rotation for px, py on -TY, -TX
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III. TRANSPORT MAP. Tilted, thin element element

Tilted element:

0

X

Z1 : shift to the origin
(−dx)

Wire element, length L

2 : rotation

3 : kick

and 4 : backward rotation

NOTE: L - emb. drift; kick is a function of Lemb and wire length l
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IV. IMPLEMENTATION in SixTrack

The implementation was done on base of preexisting model - by T.Sen
(rotation part has been taken).
The wire element parameters are:
Single element:

Keyword val. 1 val. 2 val. 3 val. 4 val. 5
SING Name 15 current (Amp) Embedding drift Length (m)

Displacement:

Keyword val. 1 val. 2 val. 3 val. 4 val. 5
DISP Name Dx(mm) Tx(deg) Dy(mm) Ty(deg)
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V. VERIFICATION. Tracking in arbitrary magnetic field

From Euler method ( and for the Hamiltonian which is used in SixTrack)
the explicit map can be obtained:

pxn =
b1py + pxa1 − b1c2 − a2c1

a1a2 − b1b2
(5a)

pyn =
a1py − a1c2 + b2px − b2c1

a1a2 − b1b2
(5b)

pzn = pz (5c)

xn = x+ ds
pxn −Ax
1 + δ

(5d)

yn = y + ds
pyn −Ay
1 + δ

(5e)

zn = z + ds[1− β0
β
− β0(pxn −Ax)2 + (pyn −Ay)2

2β(1 + δ)
] (5f)

Ax; Ay and Az - any analytical functions (with the first derivative) -
formula 2 for wire
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V. VERIFICATION. Tracking in arbitrary magnetic field

Where:

a1 = 1− ds ∗ dAx/dx
1 + δ

(6a)

a2 = 1− ds ∗ dAy/dy
1 + δ

(6b)

b1 =
ds ∗ dAy/dx

1 + δ
(6c)

b2 =
ds ∗ dAx/dy

1 + δ
(6d)

c1 = −ds ∗ dAz/dx+
ds ∗Ax ∗ dAx/dx+ ds ∗Ay ∗ dAy/dx

1 + δ
(6e)

c2 = −ds ∗ dAz/dy +
ds ∗Ax ∗ dAx/dy + ds ∗Ay ∗ dAy/dy

1 + δ
(6f)

Ax; Ay and Az - any analytical functions (with the first derivative)
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V. VERIFICATION. Firs order transport map vs.
Numerical integration

Parallel Coordinates diagram:

The axis on the right shows the difference between models (in %) for
arbitrary combinations of the variables: x,px,y,py,δ, tilts: tx,ty; and
displacements: dx,dy. The limitations were: x << L, px << 1, dx < L

Note: the good agreement if the ”kick” does not change the sign
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V. VERIFICATION in SixTrack

Integration Thin lens
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VI. APPLICATIONS: Wires at BBC

Optics version V6.503 + Magnets Errors; 7TeV; collisions mode:
BB-interactions for IP1,2,5 and 8; emit. = 3.75;
δP/P = 2.7 ∗ 10−4

Wires were placed in the geometry with the following parameters:
1. 4 wire elements (2 per IP for IP1&IP5);
2. Positions: +-104.93m from IPs (βx ≈ βy);
3. L = 1m,Lembl = 10m;
4. dx,dy - 10 sigma;
5. no tilt;
6. I = 89 Amp. per wire
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VI. APPLICATIONS: Wires at BBC

Detuning with amplitude (0-10 σ); Top - No compensation. Bottom - 4
wire are switched on

Dynamic
aperture:

6.1σ − >
7.0σ
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VI. APPLICATIONS: Wires at TCT

Optics version V6.503 + No Errors; 6.5TeV; collisions mode:
BB-interactions for IP1 and 5; emit. = 2.5; δP/P = 2.7 ∗ 10−4;
No interactions at D1

Wires were placed in the geometry with the following parameters
(Yannis Papaphilippou, Adriana Rossi):
At IP5 2 wire in TCTH (+-150m from the IP)
At IP1 1 wire in TCTV (+150m from the IP) and 1 wire after
MQY.4 (-171m)

3 cases were considered:
compensation with BB lense (16 encounters per lens)
compensation with wires - 88 Amps per wire
compensation with wires - no tune shift for zero amplitude particle
(different currents, 178 Amp. per IP)
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Top left - no compentation; right wires (88Amp/wire) Bottom left
- BB lense; right wires with different currents (178Amps/IP)
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VI. APPLICATIONS: Wires at TCT, Dynamic aperture

Displacements - 10 sigma for emit 3.75;
Dynamic aperture:

Cross.angle NO comp. BB lense Wires

284 7.0 8.2 8.1
250 6.0 6.8 -
200 5.1 5.6 -
150 3.7 3.5 3.7
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VI. APPLICATIONS: Wires at TCT, Dynamic aperture

Displacements - 10 sigma for emit 3.75;
Dynamic aperture scan for the case of 200mrad crossing angle:

Separation (emit.=3.75) in sigmas DA in sigmas

10 5.5
9.5 5.4
9 5.5

8.5 5.6
8 6.1

7.5 6.3
7 6.2

6.5 6.1
6 5.7
5 4.0
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Open questions...

1 Closed orbit is not subtracted for the wire element in the code
(subtructed in DISP)

2 Differential algebra routine for the wire element is not used
correctly...

3 Is there effect on the tracking part?
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