
LARGE-SCALE DATA ANALYSIS
WITH APACHE SPARK

ALEXEY SVYATKOVSKIY

PRINCETON UNIVERSITY

OUTLINE

• INTRO TO DATA ANALYSIS WITH APACHE SPARK
• SPARK SOFTWARE STACK
• PROGRAMMING WITH RDDS

• SPARK JOB ANATOMY: RUNNING LOCALLY AND ON A CLUSTER
• PRINCETON BIG DATA EXPERIENCE

• REAL-TIME ANALYSIS PIPELINES USING SPARK STREAMING

• MACHINE LEARNING LIBRARIES
• ANALYSIS EXAMPLES

• SUMMARY AND POSSIBLE USE CASES IN HEP

This talk is intended to give a quick intro to the Spark programming model, give an overview of using Apache Spark
on Princeton clusters, as well as explore it’s possible applications in the HEP

WHAT IS APACHE SPARK

• APACHE SPARK IS A FAST AND GENERAL PURPOSE CLUSTER COMPUTING FRAMEWORK FOR LARGE-SCALE DATA
PROCESSING
• IT BECAME A DE-FACTO INDUSTRY STANDARD FOR DATA ANALYSIS, REPLACING MAPREDUCE COMPUTING ENGINE

• MAPREDUCE ENGINE IS GOING TO BE RETIRED BY CLOUDERA - A MAJOR HADOOP DISTRIBUTION PROVIDER – STARTING
THE VERSION CDH5.5

• SPARK DOES NOT USE THE MAPREDUCE AS AN EXECUTION ENGINE, HOWEVER, IT IS CLOSELY
INTEGRATED WITH HADOOP ECOSYSTEM AND CAN BE RUN VIA YARN, USE THE HADOOP FILE FORMATS, AND
HDFS STORAGE

• ON THE OTHER HAND, IT CAN BE USED IN A STANDALONE MODE ON ANY HPC CLUSTERS
• E.G. VIA SLURM RESOURCE MANAGER AS IT IS DONE AT PRINCETON

• SPARK IS BEST KNOWN FOR ITS ABILITY TO PERSIST LARGE DATASETS IN MEMORY BETWEEN JOBS

• SPARK IS WRITTEN IN SCALA, BUT THERE ARE LANGUAGE BINDINGS FOR PYTHON, SCALA, AND JAVA

SPARK SOFTWARE STACK

Use SLURM on general purpose HPC clusters

Storage:

HDFS

NFS

GPFS

Spark R

Infiniband

10g ethernet

Read: Distributed
Pandas Dataframe

Supports
Kafka, Flume sinks

Cassandra

Available
starting Spark 1.5

Interconnect:

HEP use case:
possibility to run

ROOT in a
distributed way

using Spark RDDs?

Use on Hadoop cluster

Red color: Specific to Princeton clusters

https://www.princeton.edu/researchcomputing/computational-hardware/hadoop/
https://www.princeton.edu/researchcomputing/computational-hardware/machine-2/

PROGRAMMING WITH RDDS (I)
• RDDS (RESILIENT DISTRIBUTED DATASETS) ARE READ-ONLY PARTITIONED COLLECTIONS OF OBJECTS

• EACH RDD IS SPLIT INTO PARTITIONS WHICH CAN BE COMPUTED ON DIFFERENT NODES OF A CLUSTER

• PARTITIONS DEFINE THE LEVEL OF PARALLELISM IN A SPARK APP: IMPORTANT PARAMETER TO TUNE!

• CREATE AN RDD BY LOADING DATA INTO IT, OR PARALLELIZING EXISTING COLLECTION OF OBJECTS (LIST,
SET…)

•

Spark automatically sets the # of partitions according to
the number of file system block the file spans over. For reduce
tasks, it is set according to the parent RDD

When data has no parent RDD/input file the # of partitions
is set according to the total number of cores on nodes which
run executors on them.

See “Learning Spark” to get started: https://github.com/holdenk/learning-spark-examples

PROGRAMMING WITH RDDS (II)
• TRANSFORMATIONS: OPERATIONS ON RDD THAT RETURN A NEW RDD. THEY DO NOT MUTATE THE OLD RDD, BUT RATHER

RETURN A POINTER TO IT

• ACTIONS: ACTIONS FORCE PROGRAM TO PRODUCE SOME OUTPOUT (NOTE: RDDS ARE LAZILY EVALUATED)

• LAZY EVALUATION: RDD TRANSFORMATIONS ARE NOT EVALUATED UNTIL AN ACTION IS CALLED ON IT

• PERSISTANCE/CACHING: UNLIKE MAPREDUCE, WHERE MAKING AN INTERMEDIATE RESULT OBTAINED ON THE ENTIRE DATASET
AVAILABLE TO ALL NODES WOULD ONLY BE POSSIBLE BY SPLITTING THE CALCULATION INTO MULTIPLE MAP-REDUCE STAGES
(CHAINING) AND PERFORMING AN INTERMEDIATE SHUFFLE

• CRUCIAL FEATURE FOR ITERATIVE ALGORITHMS LIKE, FOR INSTANCE, K-MEANS

Similar to Pythonic map,
filter and reduce syntax,
except operator chaining
is allowed in Spark.
I use lambda-functions
most of the time

PROGRAMMING WITH RDDS (III)
• SPARK ALLOWS TO PERSIST DATASETS IN MEMORY AS WELL AS MEMORY/DISK (SPLIT IN A SPECIFIED PROPORTION

CONTROLLED IN CONFIG)

• PYSPARK USES CPICKLE FOR SERIALIZING DATA

From Spark Manual

ANATOMY OF A SPARK APP: RUNING ON A CLUSTER (I)
• SPARK USES MASTER/SLAVE ARCHITECTURE WITH ONE CENTRAL COORDINATOR (DRIVER) AND MANY

DISTRIBTUED WORKERS (EXECUTORS)

• DRIVER RUNS ITS OWN JAVA PROCESS, EXECUTORS EACH RUN THEIR OWN JAVA PROCESSES

• FOR PYSPARK, SPARKCONTEXT USES PY4J TO LAUNCH A JVM AND CREATE A JAVASPARKCONTEXT

• EXECUTORS ALL RAN IN JVMS, AND PYTHON SUBPROCESSES (TASKS) WHICH ARE LAUNCHED
COMMUNICATE WITH THEM USING PIPES

For Java/Scala (JVM) languages

Cluster manager
Driver program

Worker node/container

Worker node/container
SparkContext

Executor

Executor

Cache

Cache

Task Task

TaskTask

For Python

Cluster manager

Driver program

Worker node/container

Worker node/container

SparkContext

Executor,
in JVM

Executor,
in JVM

Cache

Cache

Subpr Subpr

SubprSubpr

SparkContext

Py4J launches JVM

Pipes

Pipes
See more here:
https://cwiki.apache.org/confluence/display/SPARK/PySpark+Internals

SPARK USER EXPERIENCE AT PRINCETON
• MOST OF THE CURRENT SPARK USERS COME FROM CS AND POLITICS DEPARTMENTS

• WE STARTED OUT BY USING SPARK VIA YARN INSTALLED AS A PART OF THE CLOUDERA
HADOOP DISTRIBUTION (STILL AVAILABLE ON THE BIGDATA CLUSTER)

• SWITCHED TO SPARK IN A STANDALONE MODE VIA SLURM ON GENERAL HPC CLUSTERS
• YARN USES CONTAINERS (SLURM WILL SOON TOO…), ALLOWS DYNAMIC ALLOCATION

• SLURM IS A BETTER CHOICE FOR US BECAUSE OUR CLUSTERS ARE NOT PURE SPARK OR HADOOP
CLUSTERS, AND RESOURCES NEED TO BE SHARED

• SLURM SOLUTION IS RATHER MATURE: ALLOWS ALLOCATION OF MULTIPLE EXECUTORS PER NODE

• MOST DIFFICULTIES FOR A USER IS IN MEMORY ALLOCATION

• SEE THE FOLLOWING RESOURCES FOR MORE DETAILS ON SPARK+SLURM:
• HTTPS://WWW.PRINCETON.EDU/RESEARCHCOMPUTING/FAQ/SPARK-VIA-SLURM/

• HTTPS://WWW.PRINCETON.EDU/RESEARCHCOMPUTING/COMPUTATIONAL-HARDWARE/HADOOP/SPARK-MEMORY/

ANALYSIS EXAMPLE WITH SPARK, SPARK SQL AND MLLIB
• MLLIB IS THE MAIN SPARK’S MACHINE LEARNING LIBRARY

• IT CONTAINS MOST OF THE ML CLASSIFIERS:

• LOGISTIC REGRESSION, TREE/FOREST CLASSIFIERS, SVM, CLUSTERING
ALGORITHMS…

• INTRODUCES NEW DATA FORMAT: LABELEDPOINT (FOR SUPERVISED
LEARNING)

• AS AN EXAMPLE, LETS US TAKE A KAGGLE COMPETITION:

• HTTPS://WWW.KAGGLE.COM/C/DATO-NATIVE

• DATASET FOR THAT COMPETITION CONSISTED OF OVER 300K
RAW HTML FILES CONTAINING TEXT, LINKS, AND
DOWNLOADABLE IMAGES

• THE CHALLENGE WAS TO IDENTIFY THE PAID CONTENT
DISGUISED AS JUST ANOTHER INTERNET GEM (I.E. “NON-NATIVE”
ADVERTISEMENT)

• ANALYSIS FLOW:

• SCRAPE THE DATA FROM THE WEB-PAGES: TEXT, IMAGES, LINKS…

• FEATURE ENGINEERING: EXTRACT FEATURES FOR CLASSIFICATION

• TRAIN/CROSS VALIDATE A MACHINE LEARNING MODEL

• PREDICT

Select/Join as in Pandas
DataFrame are avail starting
Spark 1.5

Train/predict

Feature
engineering

Load scraped data

REAL-TIME ANALYSES WITH APACHE SPARK
• MANY APPLICATIONS BENEFIT FROM ACTING ON DATA AS SOON AS IT ARRIVES

• NOT A TYPICAL CASE FOR PHYSICS ANALYSES AT CMS…

• HOWEVER, IT COULD BE A PERFECT FIT FOR EXOTICA HOTLINE OR ANY OTHER “HOTLINE” TYPE SYSTEMS
OR ANOMALY DETECTION DURING DATA COLLECTION

• SPARK STREAMING USES A CONCEPT OF DSTREAMS (SEQ. OF DATA ARRIVING OVER TIME)
• INGEST AND ANALYZE DATA COLLECTED OVER A BATCH INTERVAL

• SUPPORTS VARIOUS INPUT SOURCES: AKKA, FLUME, KAFKA, HDFS

• CAN OPERATE 24/7, BUT IS NOT TRULY REAL-TIME (LIKE E.G. APACHE STORM) – IT IS A MICRO-
BATCH SYSTEM WITH A FIXED (CONTROLLED) BATCH INTERVAL

• FULLY FAULT TOLERANT, OFFERING “EXACTLY ONCE” SEMANTICS, SO THAT THE DATA WILL BE
ANALYSED FOR SURE EVEN IF A NODE FAILS
• SUPPORTS CHECKPOINTING – ALLOWING TO RESTORE DATA FROM A GIVEN POINT IN TIME

EXAMPLE OF A REAL-TIME PIPELINE USING
APACHE KAFKA AND SPARK STREAMING

Driver program

Worker node/container

StreamingContext

Executor

SparkContext

Process received
data

Long task

Receiver

Worker node/container

Executor

TaskTask HDFS

Kafka broker

Data sources
(Kafka producers)

Kafka Consumer
(some consumer apps)

Kafka broker

(*) Kafka is good when message
ordering matters
(*) Spark+Spark Streaming – use
same programming model for
online and offline analysis

Kafka cluster

SUMMARY AND POSSIBLE USE CASES IN HEP

• PRINCETON BIG DATA EXPERIENCE:
• SET UP AND DEPLOYED A HADOOP CLUSTER STARTING WITH THE CLOUDERA DISTRIBUTION USING THE

HIGH AVAILABILITY CONFIGURATION (A TOPIC FOR A SEPARATE TALK…)

• PROVIDED A SOLUTION TO RUN SPARK ON NON-HADOOP CLUSTERS VIA SLURM:
• HTTPS://WWW.PRINCETON.EDU/RESEARCHCOMPUTING/FAQ/SPARK-VIA-SLURM/

• HTTPS://WWW.PRINCETON.EDU/RESEARCHCOMPUTING/COMPUTATIONAL-HARDWARE/HADOOP/SPARK-MEMORY/

• GAINED SOME EXPERIENCE IN PYSPARK PROGRAMMING
• CURRENTLY USED BY: POLITICS, CS AND EXPECTING ENVIRONMENTAL ENGINEERING GROUP

• POSSIBLE USE CASES IN HEP TO EXPLORE:
• ABILITY TO PERFROM OFFLINE (PYTHON) ROOT BASED ANALYSES USING APACHE SPARK

• UNDERSTAND IF ROOT AND SPARK ARE INTEROPERABLE
• REAL-TIME SYSTEMS WITH SPARK STREAMING/KAFKA: E.G. EXOTICA HOTLINE, HLT

BACKUP

SAMPLE SLURM SUBMISSION SCRIPT
FOR A SPARK APP

