LARGE-SCALE DATA ANALYSIS
WITH APACHE SPARK

ALEXEY SVYATKOVSKIY

PRINCETON UNIVERSITY \

- N~/

J

o

® OUTLINE

This talk is intended to give a quick intro to the Spark programming model, give an overview of using Apache Spark
on Princeton clusters, as well as explore it’s possible applications in the HEP

INTRO TO DATA ANALYSIS WITH APACHE SPARK
* SPARK SOFTWARE STACK
* PROGRAMMING WITH RDDs

* SPARK JOB ANATOMY: RUNNING LOCALLY AND ON A CLUSTER
* PRINCETON BIG DATA EXPERIENCE

REAL-TIME ANALYSIS PIPELINES USING SPARK STREAMING

MACHINE LEARNING LIBRARIES
* ANALYSIS EXAMPLES

SUMMARY AND POSSIBLE USE CASES IN HEP

WHAT IS APACHE SPARK

APACHE SPARKIS A FAST AND GENERAL PURPOSE CLUSTER COMPUTING FRAMEWORK FOR LARGE-SCALE DATA
PROCESSING

e IT BECAME A DE-FACTO INDUSTRY STANDARD FOR DATA ANALYSIS, REPLACING MAPREDUCE COMPUTING ENGINE

* MAPREDUCE ENGINE IS GOING TO BE RETIRED BY CLOUDERA - A MAJOR HADOOP DISTRIBUTION PROVIDER — STARTING
THE VERSION CDH5.5

SPARK DOES NOT USE THE MAPREDUCE AS AN EXECUTION ENGINE, HOWEVER, IT IS CLOSELY
INTEGRATED WITH HADOOP ECOSYSTEM AND CAN BE RUN VIA YARN, USE THE HADOOP FILE FORMATS, AND
HDFS STORAGE

ON THE OTHER HAND, IT CAN BE USED IN A STANDALONE MODE ON ANY HPC CLUSTERS
* E.G. VIA SLURM RESOURCE MANAGER AS IT IS DONE AT PRINCETON

SPARK IS BEST KNOWN FOR ITS ABILITY TO PERSIST LARGE DATASETS IN MEMORY BETWEEN JOBS
SPARK IS WRITTEN IN SCALA, BUT THERE ARE LANGUAGE BINDINGS FOR PYTHON, SCALA, AND JAVA

>~ Ay o ,\,/\

Spark SQL

structured data
Read: Distributed

Pandas Dataframe

Standalone Scheduler

Use SLURM on general purpose HPC clusters

SPARK SOFTWARE STACK

Spark Streaming

real-time
Supports

Kafka, Flume sinks

MLib
machine
learning

Red color: Specific ’roMn clusters

./

GraphX
graph
processing

Storage:

Interconnect:

-

N’
2 PROGRAMMING WITH RDDS ()
* RDDs (RESILIENT DISTRIBUTED DATASETS) ARE READ-ONLY PARTITIONED COLLECTIONS OF OBJECTS
* EACH RDD IS SPLIT INTO PARTITIONS WHICH CAN BE COMPUTED ON DIFFERENT NODES OF A CLUSTER
* PARTITIONS DEFINE THE LEVEL OF PARALLELISM IN A SPARK APP: IMPORTANT PARAMETER TO TUNE!
* CREATE AN RDD BY LOADING DATA INTO IT, OR PARALLELIZING EXISTING COLLECTION OF OBJECTS (LIST,
SET...)
npartitions = 10 npartitions = 10
sc = SparkContext(master, "TestApp") sc = SparkContext(master, "TestApp")
lines = sc.parallelize(["pandas", "i like pandas"],npartitions) lines = sc.textFile("/user/alexeys/test.txt",npartitions)
When data has no parent RDD /input file the # of partitions Spark automatically sets the # of partitions accordingt6
is set according to the total number of cores on nodes which the number of file system block the file spans over. For reduce
run executors on them. tasks, it is set according to the parent RDD

~ NS

S
See “Learning Spark” to get started: https://github.com /holdenk/learning-spark-examples \J \

-y

2 PROGRAMMING WITH RDDS (I}

* TRANSFORMATIONS: OPERATIONS ON RDD THAT RETURN A NEW RDD. THEY DO NOT MUTATE THE OLD RDD, BUT RATHER

RETURN A POINTER TO IT
Similar to Pythonic map,

Transformation Meaning
«—
map(func) Return a new distributed dataset formed by passing each element of the source through a fi ITe r dn d red uce SynTG X,
function func. S
except operator chaining
filter(func) Return a new dataset formed by selecting those elements of the source on which func . .
returns true. is allowed in Spdrk.

| use lambda-functions
* ACTIONS: ACTIONS FORCE PROGRAM TO PRODUCE SOME OUTPOUT (NOTE: RDDs ARE LAZILY EVALUATED) MostiofheR

Action Meaning /
reduce(func) Aggregate the elements of the dataset using a function func (which takes two arguments and returns one).

The function should be commutative and associative so that it can be computed correctly in parallel.

collect() Return all the elements of the dataset as an array at the driver program. This is usually useful after a filter or
other operation that returns a sufficiently small subset of the data.

* LAZY EVALUATION: RDD TRANSFORMATIONS ARE NOT EVALUATED UNTIL AN ACTION IS CALLED ON IT ./

* PERSISTANCE/CACHING: UNLIKE MAPREDUCE, WHERE MAKING AN INTERMEDIATE RESULT OBTAINED ON THE ENTIRE DATASET
AVAILABLE TO ALL NODES WOULD ONLY BE POSSIBLE BY SPLITTING THE CALCULATION INTO MULTIPLE MAP-REDUCE STAGES 7,
(CHAINING) AND PERFORMING AN INTERMEDIATE SHUFFLE

* CRUCIAL FEATURE FOR ITERATIVE ALGORITHMS LIKE, FOR INSTANCE, K-MEANSw \ /

- b\ J.

\

"

PROGRAMMING WITH RDDS (i)

-

S@RK ALLOWS TO PERSIST DATASETS IN MEMORY AS WELL AS MEMORY /DISK (SPLIT IN A SPECIFIED PROPORTION

CONTROLLED IN CONFIG)

PYSPARK USES CPICKLE FOR SERIALIZING DATA

Storage Level

MEMORY_ONLY

MEMORY_AND_DISK

MEMORY_ONLY_SER

MEMORY_AND_DISK_SER

DISK_ONLY

MEMORY_ONLY_2,

MEMORY_AND_DISK_2, etc.

OFF_HEAP (experimental)

Meaning

Store RDD as deserialized Java objects in the JVM. If the RDD does not fit in memory, some partitions will not
be cached and will be recomputed on the fly each time they're needed. This is the default level.

Store RDD as deserialized Java objects in the JVM. If the RDD does not fit in memory, store the partitions that
don't fit on disk, and read them from there when they're needed.

Store RDD as serialized Java objects (one byte array per partition). This is generally more space-efficient than
deserialized objects, especially when using a fast serializer, but more CPU-intensive to read.

Similar to MEMORY_ONLY_SER, but spill partitions that don't fit in memory to disk instead of recomputing
them on the fly each time they're needed.

Store the RDD partitions only on disk.

Same as the levels above, but replicate each partition on two cluster nodes.

Store RDD in serialized format in Tachyon. Compared to MEMORY_ONLY_SER, OFF_HEAP reduces garbage
collection overhead and allows executors to be smaller and to share a pool of memory, making it attractive in
environments with large heaps or multiple concurrent applications. Furthermore, as the RDDs reside in
Tachyon, the crash of an executor does not lead to losing the in-memory cache. In this mode, the memory in
Tachyon is discardable. Thus, Tachyon does not attempt to reconstruct a block that it evicts from memory. If
you plan to use Tachyon as the off heap store, Spark is compatible with Tachyon out-of-the-box. Please refer
to this page for the suggested version pairings.

From Spark Manual

-
3\

C

- N

"/

./

_ ANATOMY OF A SPARK APP: RUNING ON A CLUSTER (1)

* SPARK USES MASTER/SLAVE ARCHITECTURE WITH ONE CENTRAL COORDINATOR (DRIVER) AND MANY
DISTRIBTUED WORKERS (EXECUTORS)

* DRIVER RUNS ITS OWN JAVA PROCESS, EXECUTORS EACH RUN THEIR OWN JAVA PROCESSES

* FOR PYSPARK, SPARKCONTEXT USES PY4J TO LAUNCH A JVM AND CREATE A JAVASPARKCONTEXT

* EXECUTORS ALL RAN IN JVMS, AND PYTHON SUBPROCESSES (TASKS) WHICH ARE LAUNCHED
COMMUNICATE WITH THEM USING PIPES

Worker node/container

For Java/Scala (JVM) languages

Driver program /
Cluster manager

See more here:
https://cwiki.apache.org /confluence /display /SPARK /PySpark+internals

For Python

Driver program

"\

2 SPARK USER EXPERIENCE AT PRINCETON

MOST OF THE CURRENT SPARK USERS COME FROM CS AND POLITICS DEPARTMENTS

WE STARTED OUT BY USING SPARK VIA YARN INSTALLED AS A PART OF THE CLOUDERA
HADOOP DISTRIBUTION (STILL AVAILABLE ON THE BIGDATA CLUSTER)

SWITCHED TO SPARK IN A STANDALONE MODE VIA SLURM ON GENERAL HPC CLUSTERS
* YARN USES CONTAINERS (SLURM WILL SOON TOO...), ALLOWS DYNAMIC ALLOCATION

* SLURMIS A BETTER CHOICE FOR US BECAUSE OUR CLUSTERS ARE NOT PURE SPARK OR HADOOP
CLUSTERS, AND RESOURCES NEED TO BE SHARED

* SLURM SOLUTION IS RATHER MATURE: ALLOWS ALLOCATION OF MULTIPLE EXECUTORS PER NODE
* MOST DIFFICULTIES FOR A USER IS IN MEMORY ALLOCATION

SEE THE FOLLOWING RESOURCES FOR MORE DETAILS ON SPARK+SLURM:

\/ - J

ANALY/8IS\E')(§/MPLE WITH SPARK, SPARK SQL AND MLLIB

E—
def main(argv):
#STEP1: data ingestion
sc = SparkContext(appName="KaggleDato_Step2")
sqlContext = SQLContext(sc)

#read data into RDD
input_schema_rdd = sqlContext.read.json("file:///scratch/network/alexeys/KaggleDato/Preprocessedf0_1/part-00000")

train_label_rdd = sqlContext.read.json(PATH_TO_TRAIN_LABELS)
sub_label_rdd = sqlContext.read.json(PATH_TO_SUB_LABELS)

input_schema_rdd.registerTempTable("input")
train_label_rdd.registerTempTable("train_label")
sub_label_rdd.registerTempTable("sub_label")

#Split into 2 subsamples with different label for classification

train_wlabels_0@ = sqlContext.sql("SELECT title,text,images, links,label FROM input JOIN train_label WHERE input.id
train_wlabels_1 = sqlContext.sql("SELECT title,text,images, links,label FROM input JOIN train_label WHERE input.id
sub_wlabels = sqlContext.sql("SELECT title,text,images, links,label FROM input JOIN sub_label WHERE input.id = sub_label.id")

\ Select/Join as in Pandas

DataFrame arg
Spark 1.5

text_only_0 = train_wlabels_@.map(lambda p: p.text)
text_only_1 = train_wlabels_l.map(lambda p: p.text)
image_only_@ = train_wlabels_0 la : p.images)
image_only_1 = train_wlabels_1 : p.images)
links_only_0@ = train_wlabels_0 ¢ p.links) . .
links_only_1 = train_wlabels_1 : p.links) CIVGII sta rflng
title_only_@ = train_wlabels_0 1 p.title)

title_only_1 = train_wlabels_1l.map : p.title)

tf = HashingTF(numFeatures=10)
#preprocess text features

text_documents_0 = text_only_@.map(lambda line: tokenize(line)).map(lambda word: tf.transform(word))

text_documents_1 = text_only_l.map(lambda line: tokenize(line)).map(lambda word: tf.transform{word)) Fed‘ru re
#add the adhoc non-text features . .
documents_@ = text_documents_0.zip(image_only_0).zip(links_only_0).zip(title_only_0) eng Ineel’lng

documents_1 = text_documents_1.zip(image_only_1).zip(links_only_1).zip(title_only_1)

#turn into a format expected by MLlib classifiers
labeled_tfidf_0 = documents_0.map(lambda row: parsePoint(@,row))
labeled_tfidf_1 = documents_1l.map(lambda row: parsePoint(1,row))

labeled_tfidf = labeled_tfidf_8.union(labeled_tfidf_1)
labeled_tfidf.cache()

#CV split

(trainData, cvData) = labeled_tfidf.randomSplit([e.7, ©.3])
trainData.cache()

cvData. cache()

#Try various classifiers
model = RandomForest.trainClassifier(trainData, numClasses=2, categoricalFeaturesInfo={}, . R
numTrees=3, featureSubsetStrategy="auto",
impurity='gini', maxDepth=4, maxBins=32) > Trq In/pred ICt
Evaluate model on test instances and compute test error
predictions = model.predict(cvData.map(lambda x: x.features))
labelsAndPredictions = cvData.map(lambda lp: 1lp.label).zip(predictions)
testErr = labelsAndPredictions.filter(lambda (v, p): v != p).count() / float{cvData.count())
f ('Test Error = ' + str(testErr)
('Learned classification forest model:')
nt(model.toDebugString())

Load scraped data

train_label.id AND label
train_label.id AND label

4

MLLIB IS THE MAIN SPARK’S MACHINE LEARNING LIBRARY

\
IT CONTAINS MOST OF THE ML CLASSIFIERS:
LOGISTIC REGRESSION, TREE/FOREST CLASSIFIERS, SVM, CLUSTERING
ALGORITHMS...

* INTRODUCES NEW DATA FORMAT: LABELEDPOINT (FOR SUPERVISED
LEARNING)

")
1")

AS AN EXAMPLE, LETS US TAKE A KAGGLE COMPETITION:

DATASET FOR THAT COMPETITION CONSISTED OF OVER 300K
RAW HTML FILES CONTAINING TEXT, LINKS, AND
DOWNLOADABLE IMAGES

« THE CHALLENGE WAS TO IDENTIFY THE PAID CONTENT
DISGUISED AS JUST ANOTHER INTERNET GEM (I.E. “NON-NATIVE”
ADVERTISEMENT)

ANALYSIS FLOW: ®)

« SCRAPE THE DATA FROM THE WEB-PAGES: TEXT, IMAGES, LINKS...

- FEATURE ENGINEERING: EXTRACT FEATURES FOR CLASSIFICATIO

« TRAIN/CROSS VALIDATE A MACHINE LEARNING MODEL

« PREDYCT \J \/

9
3\

S

s/

REAL-TIME ANALYSES WITH APACHE SPARK

MANY APPLICATIONS BENEFIT FROM ACTING ON DATA AS SOON AS IT ARRIVES
« NOT A TYPICAL CASE FOR PHYSICS ANALYSES AT CMS...
e HOWEVER, IT COULD BE A PERFECT FIT FOR EXOTICA HOTLINE OR ANY OTHER “HOTLINE” TYPE SYSTEMS
OR ANOMALY DETECTION DURING DATA COLLECTION
SPARK STREAMING USES A CONCEPT OF DSTREAMS (SEQ. OF DATA ARRIVING OVER TIME)
* INGEST AND ANALYZE DATA COLLECTED OVER A BATCH INTERVAL

SUPPORTS VARIOUS INPUT SOURCES: AKKA, FLUME, KAFKA, HDFS

CAN OPERATE 24/7, BUT IS NOT TRULY REAL-TIME (LIKE E.G. APACHE STORM)—IT IS A MICRO-
BATCH SYSTEM WITH A FIXED (CONTROLLED) BATCH INTERVAL

FULLY FAULT TOLERANT, OFFERING “EXACTLY ONCE” SEMANTICS, SO THAT THE DATA WILL BE
ANALYSED FOR SURE EVEN IF A NODE FAILS

* SUPPORTS CHECKPOINTING — ALLOWING TO RESTORE DATA FROM A GIVEN POINT IN TIME

\/ - e

\—/ \ =

) — 4

EXAMPLE OF A REAL-TIME PIPELINE USING

—/

APACHE KAFKA AND SPARK STREAMING

Worker node/container

Data sources
1(Kafkq producers)

Kafka broker

Driver program

Process receive
data

’d

-

| Kafka Consumer
I (some consumer apps)

Worker node/container

d Kafka broker

(*) Kafka is good when messqée
ordering matters

(*) Spark+Spark Streaming — use

same programming model for
online and offline analysis /
2: A\

- N~/

J

e

® SUMMARY AND POSSIBLE USE CASES IN HEP

* PRINCETON BIG DATA EXPERIENCE:

e SET UP AND DEPLOYED A HADOOP CLUSTER STARTING WITH THE CLOUDERA DISTRIBUTION USING THE
HIGH AVAILABILITY CONFIGURATION (A TOPIC FOR A SEPARATE TALK...)

* PROVIDED A SOLUTION TO RUN SPARK ON NON-HADOOP CLUSTERS VIA SLURM:

* GAINED SOME EXPERIENCE IN PYSPARK PROGRAMMING
* CURRENTLY USED BY: POLITICS, CS AND EXPECTING ENVIRONMENTAL ENGINEERING GROUP

* POSSIBLE USE CASES IN HEP TO EXPLORE:
* ABILITY TO PERFROM OFFLINE (PYTHON) ROOT BASED ANALYSES USING APACHE SPARK

* UNDERSTAND IF ROOT AND SPARK ARE INTEROPERABLE
* REAL-TIME SYSTEMS WITH SPARK STREAMING /KAFKA: E.G. EXOTICA HOTLINE, HLT

N O Y

o BACKUP

. SAMPLE SLURM SUBMISSION SCRIPT ~
- FOR A SPARK APP

#!/bin/bash

#SBATCH -N 4

#SBATCH -t 06:00:00

#SBATCH —--ntasks-per-node 2
#SBATCH --cpus-per-task 4

#SBATCH —--mem=15000

module load spark'harnnpz 6/1.4.1

export THON=/usr/bin/python2.7
export AR} 5_DIR=/tmp/logs
export ARK_WORKER_DIR=/tmp/work
export Al ’ DIF ,SPARK_WORKER_DIR
-p $SPARK_ LOG DIR $SPARK_WORKER_DIR
-master.sh
sleep 15s
export MASTER=spark:// hostname':7077
$MASTER
srun spark-class org.apache.spark.deploy.worker.Worker $MASTER -d $SPARK_WORKER_DIR &
sleep a bit to let workers up fully
sleep 15s
spark-submit --executor-memory 5G --total-executor-cores 32 —--py-files SparkyBillAEalysisTools.py,scam_dist.py findLikeBills_spark.py 10 10 —--prefix_from /scratch/network/alexeys/RandomSparkTests/t
ext_3states_partitioned/ --prefix_to /scratch/network/alexeys/matches/ —--minMatchThr 30 --similarMeasure default2

=

"/

