
BUILDING ALICE
SOFTWARE STACK

Giulio Eulisse (CERN)

END-TO-END SOLUTION

ALICE build infrastructure

In the last 3 months I helped revamping the infrastructure and build tool for the ALICE software
stack. In production since over one month. Old setup has been disbanded. Actual builds are
driven by an in house tool which I called aliBuild. Testbed for some of the ideas I've been
circulating since a while.

I am not here to sell a tool

I'm here to present use-cases which I know are required for efficiently handling Continuos
Integration of the software stacks of at least two experiments and how things were implemented
in aliBuild. For what I am concerned the deliverable is having automated builds twice per day,
pull request testing and some viable development environment for externals, not a build tool.

Reduce migration cost over "One tool shall rule them all"

I think we should try to harmonise the things we agree on rather than disagree on the things we
do differently. We should reduce friction and increase reusability between the different tools out
there, rather than expect one single tool will be able to solve all of our problems.

2

Over 2K build jobs in the last 3 months, 4 different
architectures plus special builds.

3

Provisioning & scheduling Configuration management /
deployment

Continuous integration Monitoring & Results

Log parsing
& mining

BUILD TOOL: ALIBUILD

Open Source

Tool itself can be found at https://github.com/alisw/alibuild, actual recipes to build
externals are at https://github.com/alisw/alidist.

Standalone

Python is the only dependency. In particular, compared to cmsBuild, no RPM and APT.

No magic, compact, maintainable

Tool itself is 527 SLOCs of Python + 116 SLOCs of Bash. Recipes are simple Bash scripts
with a YAML header. Challenge for Go developers: rewrite it in Go with less SLOCs. :-)

Git based workflow

Configuration management happens in git. Carbon-copy of what cmsBuild does. IMHO,
having different configurations managed as files, rather than branches, makes comparing them
more difficult.

Not a CMake / SCRAM / make / (pick your favourite tool) replacement

5

https://github.com/alisw/alibuild
https://github.com/alisw/alidist

INSTANT GRATIFICATION

git clone https://github.com/alisw/alibuild

git clone https://github.com/alisw/alidist

alibuild/aliBuild -d -j 40 -a slc7_x86-64 build ROOT

Any resemblance to other experiments naming
conventions is purely fictional.

6

https://github.com/alisw/alibuild
https://github.com/alisw/alidist

RECIPE EXAMPLE

package: O2
version: %(commit_hash)s
requires:
 - FairRoot
 - AliRoot
build_requires:
 - CMake
source: https://github.com/AliceO2Group/AliceO2
tag: master

cmake $SOURCEDIR -D$CMAKE_INSTALL_PREFIX=$INSTALLROOT
make -j 20
make install

YAML formatted metadata at the top.

7

RECIPE EXAMPLE

package: O2
version: %(commit_hash)s
requires:
 - FairRoot
 - AliRoot
build_requires:
 - CMake
source: https://github.com/AliceO2Group/AliceO2
tag: master

cmake $SOURCEDIR -D$CMAKE_INSTALL_PREFIX=$INSTALLROOT
make -j 20
make install

Bash recipe at the bottom. Conventions over template magic / special languages.

8

CONVENTIONS

INSTALLROOT: the installation
prefix. The build tool will create an
archive based on the sole content of this
directory.
PKGNAME: name of the current
package.
PKGVERSION: package version, as
defined in the recipe's version: field.
PKGREVISION: the "build iteration",
automatically incremented by the build
script.
PKGHASH: SHA1 checksum of the
recipe.
ARCHITECTURE: an arbitrary string
summarising the current build platform.

GIT_TAG: the Git reference to
checkout.
JOBS: number of parallel jobs to use
during compilation.
BUILDDIR: the working directory.
E.g. the directory from where you
invoke cmake. You should not write
files outside this directory.
B U I L D _ R O O T : i t c o n t a i n s
BUILDDIR and the logfile for the
build
CONFIG_DIR: directory containing
all the build recipes.
SOURCEDIR: where the sources are
cloned / unpacked.

9

CONVENTIONS

For each package <PACKAGE>

<PACKAGE>_ROOT: package installation directory.
<PACKAGE>_VERSION: package version.
<PACKAGE>_REVISION: package build number.
<PACKAGE>_HASH: hash of the recipe used to build the
package.

Full description of the build protocol I use:

https://github.com/alisw/alibuild#the-body

10

https://github.com/alisw/alibuild#the-body

RECIPE EXAMPLE

package: O2
version: %(commit_hash)s
requires:
 - FairRoot
 - AliRoot
build_requires:
 - CMake
source: https://github.com/AliceO2Group/AliceO2
tag: master

cmake $SOURCEDIR -D$CMAKE_INSTALL_PREFIX=$INSTALLROOT
make -j 20
make install

Sources are always expected in git repositories. It simplifies source fetching
logic a lot, allows automatic rebuilds when tip of a given branch changes.

11

DEPENDENCIES HANDLING

Consistent builds

When you change something in the recipe or in the tool itself, it notices and acts
accordingly on a subsequent build of the tool and it's dependencies. E.g. if you change
ROOT recipe and try to rebuild AliRoot, it will notice.

Flexible (and correct) handling of dependencies

Topological sort of the dependency graph for correct build order, even in the case of
implicit dependencies. Run-time and build-time dependencies. Ability to disable
dependencies. Platform (and soon Experiment) specific dependencies. Parallel
installations of externals.

Parallel installation

The requirement to have one common namespace for all our builds is not going away
any time soon. Same for the ability to reuse dependencies between different builds.

12

CONSISTENT BUILDS

If you change GSL
recipe...

libxml2

zlib

ROOT

AliEn-RuntimeGSL

ZeroMQ

sodium Python

FreeType libpng

O2

FairRootAliRoot pythia

pythia6GEANT4GEANT3

boost

GCCfastjet HepMClhapdf

cgal yaml-cpp

13

CONSISTENT BUILDS

If you change GSL
recipe...

libxml2

zlib

ROOT

AliEn-RuntimeGSL

ZeroMQ

sodium Python

FreeType libpng

O2

FairRootAliRoot pythia

pythia6GEANT4GEANT3

boost

GCCfastjet HepMClhapdf

cgal yaml-cpp
aliBuild notices and
will rebuild (in the

correct order)
everything which

depends on it

14

PARALLEL INSTALLATIONS

../osx_x86-64/

 ../AliRoot/

 ../v1-1

 ../v2-1

 ../latest

 ../boost/

 ../latest

 ../v1.57.0-1

 ../v1.59.0-1

 ../fastjet/

 ../latest

 ../v3.1.3_1.017-1

 ../v3.1.3_1.017-2

 ../v3.1.3_1.020-1

../slc7_x86-64/...

Usual:
<architecture>/<package>/<version>

hierarchies.

Architecture is just a string, no
platform auto-detection. It
identifies the build host, not the
installation or runtime
requirements.

Changes in build recipes result in
different "revisions".

15

Reuse builds

Just like cmsBuild packages built by one builder can be reused by other
builders, even on a separate machine. This comes handy when you
cannot guarantee that you will always rebuild on the same machine.
Compared to cmsBuild there are some differences:

➤ Binary packages are standard tarballs, not RPMs.

➤ Only rsync and some smart directory structure are needed for the object
store. No special APT repository needed.

➤ Packages are uploaded one by one, not in bunches. Most likely slower
than cmsBuild, but much simpler as DB consistency is there without
need for transactions.

BINARY REPOSITORY

16

BINARY REPOSITORY

Build ROOT 6.X.Y-1

Reuse ROOT 6.X.Y-1

time

Build package
is uploaded to

store

Later rebuilds of the
same recipe (on a

different machine /
docker container) do

not rebuild but
download the binary

package from the store.

17

BINARY REPOSITORY

Build ROOT 6.X.Y-1
using recipe A

Build ROOT 6.X.Y-1
using recipe B

time

Two different builders
might end up trying to

upload the same
package from different

recipes.

Only the first one succeeds,
the other one does not
rebuild but repackages

everything and tries again.

Repackage to
ROOT 6.X.Y-2

18

CVMFS / YUM / APT SUPPORT

Build ROOT 6.X.Y-1

TARS

time

Build package
is uploaded to

store

Tarballs are converted to
RPMs / DPKG via FPM,
store metadata is used to

construct a standard
yum / apt repository

YUM / RPMS

aliPublish

APT / DEBSCVMFS

19

Inspired by Chris Jones rant on cmsBuild. aliBuild can pick up sources from local
checkouts for the builds. After the first build, one can go inside the build directory
and type "make install". Handy for those who need to develop externals while
improving the application code (e.g. multithreading fixes).

git clone https://github.com/alisw/alibuild

git clone https://github.com/alisw/alidist

git clone https://github.com/root-mirror/root ROOT

alibuild/aliBuild -a slc7_x86-64 --devel ROOT build AliRoot

...

cd sw/BUILD/ROOT-latest/ROOT

make install

DEVELOPER MODE

20

https://github.com/alisw/alibuild
https://github.com/alisw/alidist
https://github.com/root-mirror/root

DOCKER SUPPORT

Simplify cross platform builds

Handy for cross platform builds, i.e. using your Mac laptop to test builds
in the slc7 environment. Just add "--docker" to the command line and the
build will happen inside a container matching the provided architecture
(another reason for NOT detecting the local architecture).

Create docker containers (not implemented)

It's trivial to extend the above to allow building and uploading of the
containers with the results of the build itself.

21

ARCHITECTURE CUSTOMIZATIONS

$ARCHITECTURE

The system exports the command line provided architecture to the recipes as an environment variable.

Architecture specific dependencies

aliBuild supports architecture specific dependencies in the YAML preamble by adding a regular
expression which needs to match for the requirements to be valid. E.g.:

name: AliRoot-tests

requires:

 - AliRoot

 - IgProf:slc7.*

You can then use $<package>_ROOT to detect if the dependency was included or not.

22

EXPERIMENT CUSTOMIZATIONS

aliBuild... alfaBuild... anyBuild!

You can get experiment specific customisations (at the moment limited to a few details, like the
name of the project hosting recipes) by simply using a symlink with the correct name. E.g. GSI
people are experimenting with "alfaBuild" which uses the "alfadist" repository (1 week of work).

Build customizations (idea)

Build customisations can be driven the same way as the architecture ones. A $FLAVOUR can be
defined as part of the build environment, depending on the tool name:

E.g.: "aliBuild" ⇒ "FLAVOUR=ali", "alfaBuild" ⇒ "FLAVOUR=alfa".

name: ROOT

requires:

 - Alien: flavour=ali

 - Python: flavour=(lhcb|atlas)

23

HOW TO USE

To build a package:
git clone https://github.com/alisw/alibuild.git
git clone https://github.com/alisw/alidist.git
alibuild/aliBuild -d -a slc7_x86-64 -j 16 build AliRoot

To build a package in developer mode:
git clone https://github.com/root-mirror/ROOT
alibuild/aliBuild -d -a slc7_x86-64 -j 16 --devel ROOT build AliRoot

To build a package in docker mode:
alibuild/aliBuild -d -a slc7_x86-64 -j 16 --docker build AliRoot

To disable a package (and drop all its dependencies):
alibuild/aliBuild -d -a slc7_x86-64 -j 16 --disable GEANT4 build O2
alibuild/aliBuild -d -a slc7_x86-64 -j 16 --disable simulation build O2

24

SOURCECODE HANDLING

Git(hub/lab) based

The tool handles directly git repositories only. This simplifies enormously
the code which takes care or managing the sources and provides nice,
uniform, web based views.

Benefits

- Support for "moveable" builds without extra code.

- Support for changing repository without rebuilding (assuming the
commit hash is the same).

- Easy backup / proxying / mirroring of sources. Fast downloads for daily
builds if local "reference" clone is available.

25

SOURCECODE AND PATCHES

Patches are inevitable

Some bugfixes just cannot wait for the next ROOT release. Sometimes ZeroMQ does not
compile on Mac and we are the first ones to find out (e.g. yours truly: https://github.com/
zeromq/libzmq/pull/1483). The goal is to simplify contributing upstream, not to fork.

Policy on how to handle external sources

Policy over tools. Current one I wrote and we use:

https://github.com/alisw/alidist#guidelines-for-handling-externals-sources

(again carbon copy of CMS one).

Policy is NOT mandatory

Of course there are cases where we cannot redistribute sources. Preferred option would be use
a protected git repository, if not even is an option, "curl inside the recipe" is of course not
forbidden. You simply lose the benefits of dealing with git.

26

https://github.com/zeromq/libzmq/pull/1483
https://github.com/alisw/alidist#guidelines-for-handling-externals-sources

PROPOSED POLICY

If Sources hosted on git, used unmodified:

➤ Directly refer to the Upstream repository.

If Sources hosted on git, need patching:

➤ Fork / mirror the relevant parts of the Upstream repository

➤ Pick a tag / commit which will be used as <fork-point>, create a branch
"alice/<fork-point>". Apply Patches on top.

If Sources are not hosted on git:

➤ Create an ALICE mirror in some agreed location, e.g. https://github.com/alisw/

➤ Import a tar-ball with one Upstream version, commit it to git, tag it with the
original tag.

➤ Create a branch "alice/<fork-point>" and apply Patches on top.

27

https://github.com/alisw/

PROPOSED POLICY: BENEFITS

Sources history can be browsed:

https://github.com/alisw/root

Patched Sources can be pin-pointed:

https://github.com/alisw/root/tree/alice/v5-34-30

Upstream Sources can be pin-pointed:

https://github.com/alisw/root/tree/v5-34-30

Changes between w.r.t. Upstream can be diff-ed

https://github.com/alisw/root/compare/v5-34-30...alice/v5-34-30

28

https://github.com/alisw/root
https://github.com/alisw/root/tree/alice/v5-34-30
https://github.com/alisw/root/tree/v5-34-30

PROPOSED POLICY: BENEFITS

Sources history can be browsed:

https://github.com/alisw/geant4/

Patched Sources can be pin-pointed:

https://github.com/alisw/geant4/tree/alice/v4.10.01.p02

Upstream Sources can be pin-pointed:

https://github.com/alisw/geant4/tree/v4.10.01.p02

Changes between w.r.t. Upstream can be diff-ed:

https://github.com/alisw/geant4/compare/v4.10.01.p02...alice/v4.10.01.p02

29

https://github.com/alisw/geant4/
https://github.com/alisw/geant4/tree/alice/v4.10.01.p02
https://github.com/alisw/geant4/tree/v4.10.01.p02
https://github.com/alisw/geant4/compare/v4.10.01.p02...alice/v4.10.01.p02

PERSONAL NOTES

Build protocol

I still think that rather then worrying about the tool we should concentrate of making recipes
easily usable by all our tools. Current "build protocol" for alibuild recipes fully described at

https://github.com/alisw/alibuild#recipes-format

Just noticed my conventions strikingly similar to Conda's, I might even adapt a few things to
make it exactly the same where possible (e.g. PKGVERSION => PKG_VERSION).

Sources protocol

I'm still convinced that embracing Git / Github for managing sources and patching is the
way to go.

Different problems, different tools

IMHO tools like Homebrew, Conda, are fantastic solutions for a different problem, i.e.
desktop installations. Again, finding a way to easily create Conda / Homebrew recipes from
our own is more interesting, IMHO, than trying to stretch tools to our use cases.

30

https://github.com/alisw/alibuild#recipes-format

