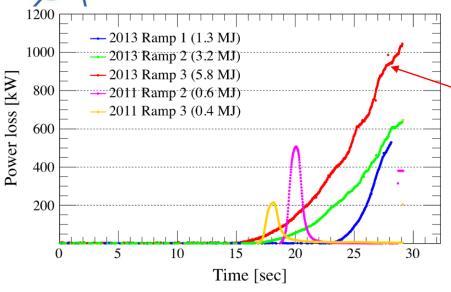


MD340 - Collimation Quench Test for Protons at 6.5 TeV

R. Bruce, A. Mereghetti, S. Redaelli, B. Salvachua

rMPP Meeting, CERN, 26th Oct 2015

Introduction and Motivations



- DS downstream of IR7:
 - Affected by leakage from betatron collimation system (single diffractive events);
 - Limiting location for collimation losses (near Q8);
 - Relevance for maximum intensity reach for RunII, RunIII and HL-LHC;
- Working principle of MD:
 - Induce large betatron losses at TCPs (by means of ADT excitation) and monitor the behavior of SC magnets in DS;
- Procedure identical to that of 2013, but with 6.5
 TeV beam energy, implying smaller margin to
 quench;

Introduction and Motivations

	Qι	iench	Leve			
m Energy	[mW/cm³]				Endep	
[TeV]	Steady State			Ramp	[mW/cm³]	
<u>4</u>		66.5		115-140	25-70 (Fluka)	
6.5	>	43	9	74-90	25-140 (aim)	

Naïve scaling of quench level (B. Auchmann)

This year: let's try to flatten losses, 1MW over 5-10s;

Year of Test	Beam Energy [TeV]	settings	cleaning (h)	Loss at TCP (P _{TCP}) [kW]	Loss at DS (h x P _{TCP}) [W]	Factor wrt 2013
2011	3.5	operational	6.60E-04	215	142	0.14
				510	337	0.34
2013	4	relaxed	9.50E-04 7	530	504	0.50
		mm	kont sottings	640	608	0.61
		111111-	kept settings	1050 "Refe	erence" 998	1
2015	6.5	operational	_ 4.00E-04	2494 Forb	oidden <mark>998</mark>	1
	Confirmed b	y simulations!	x2.5	1000	400	0.4
		relaxed	L _{1.00E-03}	1000	1000	1

Bear

Procedure

- Same as that of 2013, but at 6.5 TeV (instead of 4 TeV);
 - Three ramps to 6.5 TeV:
 - ADT set up (+full set of qualification LMs of relaxed settings), with 3 nominal bunches (SBF, <3E11 p);
 - Quench attempt with operational collimation settings and 500-1000 kW, with 144+72 bunches (final numbers depend on previous fill);
 - 3. Quench attempt with relaxed collimation settings and 500-1000 kW, with 144+72 bunches (depending on previous fill);
 - Optics: flat top (no squeeze, no collapsing of separation bumps at IPs);

Preparation:

- ADT: required a bit of time to recall the settings used in 2013 (gain and gating) and testing them;
- BLMs: present thresholds must be raised to allow for larger beam losses:
 - Operational collimation settings: scaling of qualification LMs (after TS2) to estimate new thresholds:
 - analysis on RS09 (LMs) done; → same AT applied to long RSs;
 - Short RSs still to decide what to do exactly;
 - Relaxed collimation settings: need for qualification LMs → squeezed in beforehand? In the same MD? (e.g. after ADT set-up)
- Online monitor of losses (kW);

Additional Slides

Documentation

- MPP procedure being finalized;
- MD3-2011 DS Quench Test#2 MPP procedure;
- MD4-2011: Quench Margin at 3.5 TeV MPP procedure;
- Quench Test 2013: Quench Margin at 4TeV:
 - MPP procedure;
 - MD note: "Collimation Quench Test with 4 TeV Proton Beams";
 - PRSTAB article: "Testing Beam-Induced Quench Levels of LHC Superconducting Magnets";