Robust ceramic composites with tunable electric properties

Miguel Morales Carlos Pecharromán cpg@icmm.csic.es

Instituto de Ciencia de Materiales de Madrid, CSIC Spain.

eramic Composites

Research:

Percolative ceramic/metal composites

• Plasmonic materials:

Biomedical applications

Cutting tools

Defining the ceramic composites.

- Conductivity around 10⁻¹⁰ Sm⁻¹. Lossy material.
 - Matrix-> bad insulator.
 - Inclusions-> bad conductor.
- Stability against high fields, ageing and atmosphere.
 - Electronic conductivity. (Ion conductivity should be avoided in the conductive phase due to ageing related to faradaic conductivity)
 - Water condensation (porosity) produces inhomogeneity and sparks. (Porous ceramics must be rejected)
 - Excellent homogeneous microstructure.
- Ability for tuning the conductivity.
- Good mechanical properties.
- Not very expensive. The material can be scaled-up for industrial production.

Creating a new material with specific values of electric properties from scratch:

http://www-materials.eng.cam.ac.uk/mpsite/interactive_charts/resistivity-cost/basic.html

Composites

Polymers

Ceramics

Percolation and conductivity:

- To create new materials with a specific value of conductivity we use two materials with larger and smaller value.
- The effective property does not follow the "rule of mixtures".
- Combining dissimilar materials in combination with heterogeneous aggregation produce "out of specification"

ZF materials.

- Composites are made by poor electron conductive inclusions embedded into a poor insulating matrix.
- Both components are good oxygen conductors at T>300°C. Thermal treatments under oxidizing or reducing atmosphere can reversibly modify the composite conductivity.
- Powder processing are relatively simple and can be easily scaled up to produce large or thin plates (10 μ m) by standard industrial procedures.
- Large Z's
- Relatively high ε
- Good chemically stability.

ZF Composites: Experimental Set-up and Microstructure

Electrical properties of ZF electrodes conductivity tuning

- Tuning of conductivity is a crucial feature for a composite.
- The percolation threshold of this system is $f_c \sim 0.23$: ρ varies from 10^{13} to $10^8 \Omega \cdot \text{cm}$
- Fine tuning (2 orders of magnitude) can be done by a thermal treatment at $T>300^{\circ}\text{C}$ in air $(\rho\downarrow)$ or in neutral or reducing atmosphere $(\rho\uparrow)$

Electrical properties: Stability

- Ceramic composites present a non-linear I/V behavior.
- Resistance fall around an order of magnitude for high E fields.
- This composites do not present ageing at all.

Gas-Ceramic Electrode Interaction

- Although the excellent electrical properties of ZF composites, the behavior as anode in a gas (freon) detector is odd.
- However, a surface treatment allows them to be used in gas chambers.

10

Conclusions.

- Composite ceramic materials with previously specified electrical properties can be produced from scratch.
- Conductivity can be tuned by changing concentration and by thermal treatments.
- They present optimal electrical stability even under high voltages for indefinite time periods.
- Epitaxial surface treatments make them suitable to be employed in gas detector electrodes.

