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 Principle of Signal Induction in Particle Detectors, Ramo’s Theorem

Quasistatic Approximation of Maxwell’s Equations, Applications

Generalized Signal Theorems

Signals in Resistive Plate Chambers

Signals in Silicon Strip Detectors
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Charge Above a Metal Plane

q

q

A point charge in presence of an 

infinite grounded metal plane will

induce a total charge of –q.

Different positions of the charge will 

change the charge distribution on 

the surface, but the induced charge 

is always –q.   

-q

-q

Charge density

1) Calculate the electric field E(x,y,z) 

2) The charge density on the plate 

Is given by b(x,y) = 0E(x,y,z=0)

3) The total induced charge is given by 

Qind = int b(x,y) dx dy

I=0
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Charge above Infinite Plane

q

In case the strips are segmented, 

the induced charge on each strip will 

change when the charge q is moving.

The movement of the charge therefore

induces currents that flow between 

the strips and ground.

This is the principle of signal generation 

in ionization detectors.
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V

I1(t)      I2(t)         I3(t)       I4(t) 
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Ramo’s Theorem

 One removes the charge, sets the electrode in question to voltage V0 and 
grounds all other electrodes.  

 This defines an electric field E(x), the so called weighting field of the electrode.

The induced current is the given by  I1(t) = q/V0 E1(x0(t)) d/dt x0(t)

The current induced on a grounded electrode by a charge q moving 
along a trajectory x0(t) can be calculated the following way: 
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An extension of the theorem, where the electrodes are connected with arbitrary 
discrete impedance elements, has been given by Gatti et al., NIMA 193 (1982) 651.

Extensions of the Theorem

However this still doesn’t include the scenario where a conductive medium is 
present in between the electrodes, as for example in Resistive Plate Chambers or 
undepleted Silicon Detectors.
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Extensions of the Theorem

2mm Bakelite, ρ ≈ 1010 Ωcm 3mm glass, ρ ≈ 2x1012 Ωcm 0.4mm glass, ρ ≈ 1013 Ωcm

Silicon Detectors

depletion layer 

Undepleted layer ρ ≈ 5x103Ωcm

Resistive Plate Chambers

Irradiated silicon typically has 

larger volume resistance.
Charge spreading with resistive layers
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Quasistatic Approximation of 
Maxwell’s  Equations

In an electrodynamic scenario where Faraday’s law can be neglected, 

I.e. the time variation of magnetic fields induces electric fields that are small compared 

to the fields resulting from the presence of charges, Maxwell’s equations ‘collapse’

into the following equation:

This is a first order differential equation with respect to time, so we expect that in 
absence of external time varying charges electric fields decay exponentially.

This equation has the same form as the Poisson equation for electrostatic problems.

Pointed out by B. Schnizer et. al, NIMA 478 (2002) 444-447 

Performing Laplace Transform gives the equation  
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Quasistatic Approximation of 
Maxwell’s  Equations

This means that in case we know the electrostatic solution for a given 

we find the electrodynamic solution by replacing  with  +/s and 

performing the inverse Laplace transform.

The fields decays exponentially with a time constant . 

Point charge in infinite space with conductivity .
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Formulation of the Problem

At t=0, a pair of charges +q,-q is produced at 
some position in between the electrodes. 

From there they move along trajectories x0(t)
and x1(t). 

What are the voltages induced on electrodes 
that are embedded in a medium with position 
and frequency dependent  permittivity and 
conductivity, and that are connected with 
arbitrary discrete elements ?

W. Riegler: NIMA 491 (2002) 258-271

Quasistatic approximation

Extended version of Green’s 2nd theorem
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Theorem (1,4)

Calculate the (time dependent) weighting fields of all electrodes

Remove the charges and the discrete elements and calculate the weighting fields of all 

electrodes  by putting a voltage V0(t) on the electrode in question and grounding all others.

In the Laplace domain this corresponds to a constant voltage V0 on the electrode. 
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Theorem (2,4)

Calculate induced currents in case the electrodes are grounded
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Theorem (3,4)

Calculate the admittance matrix and equivalent impedance elements from the 

weighting fields.
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Theorem (4,4)

Add the impedance elements to the original circuit and put the calculated currents 

On the nodes 1,2,3. This gives the induced voltages.
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Examples

r6  =1/  1012cm

2mm Aluminum

3mm Glass

300m Gas Gap

Amplifier

Rin

HV

RPC Silicon Detector

Vdep

Undepleted Zone,  =1/  5x103cm

Depleted Zone

Rin

  0 /   100msec   0 /   1ns

heavily irradiated silicon has larger resistivity 

that can give time constants of a few hundreds of ns, 
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Example, Weighting Fields (1,4)

Weighting Field of Electrode 1

Weighting Field of Electrode 2

a = r 0 + /s

b = 0

a = r 0 + /s

b = 0



Werner Riegler, CERN 17

Example, Induced Currents (2,4)

At t=0 a pair of charges q, -q is created at z=d2. 

One charge is moving with velocity v to z=0

Until it hits the resistive layer at T=d2/v.
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Example, Induced Currents (2,4)

In case of high resistivity (>>T, RPCs, 

irradiated silicon)  the layer is an insulator.

In case of very low resistivity ( <<T, silicon) the 

layer acts like a metal plate and the scenario 

is equal to a parallel plate geometry with plate 

separation d2. 
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Example, Admittance Matrix (3,4)

a = r 0 + /s

b = 0

electrode1

electrode2

C2

C1

R
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Example, Voltage (4,4)

V2(t) I2(t)

V1(t) I1(t)

Rin

C2

C1

R
HV

Rin
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Strip Example  

3 = 0

2 = 0+/s

1 = 0

What is the effect of a conductive layer between the 

readout strips and the place where a charge is moving ?
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Strip Example  

3 = 0

2 = 0+/s

1 = 0

V0

Electrostatic Weighting field (derived from B. Schnizer et. al, CERN-OPEN-2001-074):

Replace 1  0, 2  0+/s, 3  0 and perform inverse Laplace Transform

 Ez(x,z,t). Evaluation with MATHEMATICA:
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Strip Example  
T<<
T=
T=10
T=50
T=500

I1(t)                                   I3(t)                                  I5(t)

 = 0/

The conductive layer ‘spreads’ the signals across the strips.
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Examples for different geometries 
with thin resistive layers
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Infinitely extended resistive layer

A point charge Q is placed on 
an infinitely extended resistive 
layer with surface resistivity of 
R Ohms/square at t=0.

What is the charge distribution 
at time t>0 ?

Note that this is not governed 
by any diffusion equation.

The solution is far from a 
Gaussian.

The timescale is giverned by 
the velocity v=1/(2ε0R)
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Resistive layer grounded on a circle

A point charge Q is placed on a 
resistive layer with surface 
resistivity of R Ohms/square 
that is grounded on a circle

What is the charge distribution 
at time t>0 ?

Note that this is not governed 
by any diffusion equation.

The solution is far from a 
Gaussian.

The charge disappears 
‘exponentially’ with a time 
constant of T=c/v (c is the 
radius of the ring)
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Resistive layer grounded on a rectangle

A point charge Q is placed on a 
resistive layer with surface 
resistivity of R Ohms/square 
that is grounded on 4 edges

What are the currents induced 
on these grounded edges for 
time t>0 ?
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Resistive layer grounded on two sides and insulated on the other

A point charge Q is placed on 
a resistive layer with surface 
resistivity of R Ohms/square 
that is grounded on 2 edges 
and insulated on the other 
two.

What are the currents induced 
on these grounded edges for 
time t>0 ?

The currents are monotonic.

Both of the currents approach 
exponential shape with a time 
constant T.

The measured total charges 
satisfy the simple resistive 
charge division formulas. 
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Infinitely extended resistive layer with parallel ground plane

A point charge Q is placed on an infinitely 
extended resistive layer with surface resistivity of 
R Ohms/square and a parallel ground plane at t=0.

What is the charge distribution at time t>0 ?

This process is in principle NOT governed by the 
diffusion equation.

In practice is is governed by the diffusion equation 
for long times.

Charge distribution at t=T
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Infinitely extended resistive layer with parallel ground plane

What are the charges induced 
metallic readout electrodes by 
this charge distribution?

Gaussian approximation

Exact solution
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Resistive layer grounded on a circle with parallel ground plane
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Uniform currents on resistive layers

Uniform illumination of the resistive 
layers results in ‘chargeup’ and related 
potentials.
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Summary

Theorems for calculating fields and signals in detectors with resistive 
elements exist.

Exact solutions for a few basic geometries were given.

The diffusion equation is only an approximate description of charge 
diffusion on thin resistive layers.

Under well defined conditions, 

specifically when the gradient of the charge distributions over distances 
on the order of the ground plane distance are small (t >> T)

the diffusion equation which leads to Gaussian charge distributions can 
be applied.


