LHCD

Extended Theorems for Signal
Induction In Particle Detectors

Werner Riegler, CERN
RD51 workshop, Dec. 9th 2015

= Principle of Signal Induction in Particle Detectors, Ramo’s Theorem
mQuasistatic Approximation of Maxwell’ s Equations, Applications
mGeneralized Signal Theorems

mSignals in Resistive Plate Chambers

mSignals in Silicon Strip Detectors

Werner Riegler, CERN 1



Available online at www.sciencedirect.com NUCLEAR

INSTRUMENTS
SCIENCE@DIHECT. &METHODS
. N IN PHYSICS
e TN RS RESEARCH
ELSEVIE Nuglear Instruments and Methods in Physics Research A 535 (2004) 287-293 Section A

www.elsevier.com/locate/nima

Extended theorems for signal induction
in particle detectors VCI 2004

. *
W. Riegler
CERN, PH Division, Rt. De Meyrin, Geneva 23CH-1211, Switzerland
Available online 13 August 2004

ELSEVIER Nuclear Instruments and Methods in Physics Research A 491 (2002) 258-271

Induced signals in resistive plate chambers

Werner Riegler
EP Division, CERN, CH-1211 Geneva 23, Switzerland

Received 10 April 2002; received in revised form 30 April 2002; accepted 2 May 2002

Werner Riegler, CERN

NUCLEAR

INSTRUMENTS
& METHODS
IN PHYSICS
RESEARCH

Section A

www.elsevier.com/locate/nima



mﬁl‘i Charge Above a Metal Plane

A point charge in presence of an ' q Charge density
infinite grounded metal plane will 1) Calculate the electric field E(x,y,z)
iInduce atotal charge of —q. . q 2) The charge density on the plate

Is given by b(x,y) = €,E(x,y,z=0)
Different positions of the charge will 3) The total induced charge is given by
change the charge distribution on Qina =Nt b(x,y) dx dy
the surface, but the induced charge

Is always —q.
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THChH| Charge above Infinite Plane

In case the strips are segmented,
the induced charge on each strip will '
change when the charge q is moving.

The movement of the charge therefore .
iInduces currents that flow between
the strips and ground.

This is the principle of signal generation -CI
In ionization detectors.

Ll [ wpmpele]
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Ramo’ s Theorem
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The current induced on a grounded electrode by a charge q moving
along a trajectory x,(t) can be calculated the following way:

m One removes the charge, sets the electrode in question to voltage V, and
grounds all other electrodes.

m This defines an electric field E(x), the so called weighting field of the electrode.

mThe induced current is the given by 1,(t) = q/V, E;(Xy(t)) d/dt x,(t)
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An extension of the theorem, where the electrodes are connected with arbitrary
discrete impedance elements, has been given by Gatti et al., NIMA 193 (1982) 651.

Extensions of the Theorem

However this still doesn’ t include the scenario where a conductive medium is
present in between the electrodes, as for example in Resistive Plate Chambers or
undepleted Silicon Detectors.

Werner Riegler, CERN 6
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B8 Extensions of the Theorem

Resistive Plate Chambers

“
—

]
S

2mm Bakelite, p = 101°Qcm 3mm glass, p = 2x1012Qcm 0.4mm glass, p =103 Qcm

Silicon Detectors Micro Mesh

Avalanche

depletion layer

;53:3:;
Charge spreading with resistive layers

Irradiated silicon typically has
larger volume resistance.
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Quasistatic ,’Approximation of
Maxwell" s Equations

Pointed out by B. Schnizer et. al, NIMA 478 (2002) 444-447

In an electrodynamic scenario where Faraday’s law can be neglected,

l.e. the time variation of magnetic fields induces electric fields that are small compared
to the fields resulting from the presence of charges, Maxwell’ s equations ‘collapse’
into the following equation:

V sV %mi,t)w o(@)V] ¢(f,t)=—§pm(f,t) and  E(3t) = —Vé(Z1)

This is a first order differential equation with respect to time, so we expect that in

absence of external time varying charges electric fields decay exponentially.

Performing Laplace Transform gives the equation
= — = — —+ a —+ —+ 1 —+
V |ees s (B V] 0(F,9) = —pext(E,8) with £,54(Z,8) = (@) +_0(2)

This equation has the same form as the Poisson equation for electrostatic problems.

Werner Riegler, CERN
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Quasistatic Approximation of
Maxwell’s Equations

This means that in case we know the electrostatic solution for a given ¢
we find the electrodynamic solution by replacing € with ¢ +o/s and
performing the inverse Laplace transform.

Point charge in infinite space with conductivity o.

_ et @i 1
¢(T) a 47'1"51"5[1 r tf?(?", S) o 4?T(ETEG -+ ﬂ"fs) r
-1 Q E_tﬁ_ : ErEQ
o(r,t) =L ~[o(r,s)] = with 7 =
Amrereqg T o

The fields decays exponentially with a time constant T.
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ek Formulation of the Problem

At t=0, a pair of charges +q,-q is produced at
some position in between the electrodes.

From there they move along trajectories xy(t)
and x,(t).

What are the voltages induced on electrodes
that are embedded in a medium with position
and frequency dependent permittivity and
conductivity, and that are connected with
arbitrary discrete elements ?

D

W. Riegler: NIMA 491 (2002) 258-271
Quasistatic approximation

V |ees$(Z,9)V] 6(&, 5) = —pezt(Z, 5)
oy (B 9) = =(3,9) + ~o(F,5)

Extended version of Green’ s 2"d theorem
[ [p@F@Vo(@) - 6()F(@)V6()] dA
= | [p@VU@VIE) - o@ V@ V@) o
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Theorem (1,4) @V

A

Remove the charges and the discrete elements and calculate the weighting fields of all
electrodes by putting a voltage V,5(t) on the electrode in question and grounding all others.

In the Laplace domain this corresponds to a constant voltage V, on the electrode.

- -

© o

Calculate the (time dependent) weighting fields of all electrodes

Veers(Z )V 6(8,5) =0 6n(&,9)|:_ 7 = Vobum
En(Z,5) = —Von(Z,s)  En(Z,t) = L7 |En(Z,9)]

Werner Riegler, CERN 1



Theorem (2,4)

Calculate induced currents in case the electrodes are grounded

q [tz

t
1 [,
V[][J

Fo(t),t —t

71 (), t —t/]

Werner Riegler, CERN

zo(t)dt!

71 (¢)dt
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Theorem (3,4)

Calculate the admittance matrix and equivalent impedance elements from the
weighting fields.

vrm() = [ 2o (O En(@ )dA tum(s) = Umn(s)

1 1
Z‘ﬂ-ﬂ —
() Z,ﬁ:l Ynm(s)

Z]_ ]_(S) i2ext(s)
1lext(s)

Z12(s) v2(s)

vi(s) — ﬁ
722(s)
2239 | S

Z13(s) [ N

A 4

|

vi(s)

13ext{s)
Z33(s)

Werner Riegler, CERN 13
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Theorem (4,4)

Add the impedance elements to the original circuit and put the calculated currents
On the nodes 1,2,3. This gives the induced voltages.

12(0)

722
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RPC

Amplifier

2mm Aluminum

3mm Glass

HV
300pum Gas Gap

T~ €y/ o = 100msec

Examples

Silicon Detector

- D

Depleted Zone

Vdep
1~ €y/oc =1ns
heavily irradiated silicon has larger resistivity

that can give time constants of a few hundreds of ns,

Werner Riegler, CERN 15
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#
Weighting Field of Electrode 1

electrode? T

El L &= g |d3

A
!

Vo

Werner Riegler, CERN

Example, Weighting Fields (1,4)

Elz(s)

£alo — Vosr S % z>0
gady + epdy (dy +dzer) s+ %

&'ng _ Vg 5 2 <0
gady +5pdy (d1 +dosr) s+ %2
= ErEQ = £0 (dl + dz&'r)

o o do
EZZ(S) - _Elz(s)
16
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At t=0 a pair of charges q, -q is created at z=d,.

. . . . ro(t) =
One charge is moving with velocity v to z=0 —
Until it hits the resistive layer at T=d,/v.
d zo(t) =
Tum
clectrode? Q I —

electrodel

Werner Riegler, CERN

Example, Induced Currents (2,4)

dg—vt
0
—
0
Vo |5 271 _%
di+erda )+ T ©

t
r dj )
qul—ii‘rdz [1 + dzEr(l € PE)]

1 d

T _t
Hle2—1)e ™

VI Ferds do

t<T
t>T

t< T
t>T

z>=0

t<T

t>T
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E 40
=
= | >
! g
Tum | =
clectrode? Q ; =
A J d2
J dl 20
clectrodel
11(t)
In case of high resistivity (t>>T, RPCs,
irradiated silicon) the layer is an insulator.
0

In case of very low resistivity (t <<T, silicon) the
layer acts like a metal plate and the scenario

Is equal to a parallel plate geometry with plate
separation d,.

Werner Riegler, CERN

35 -

30 |

0 02 04 06 08 1 12 14 1.6 18 2

t/T
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BN Example, Admittance Matrix (3,4) S

electrode2
&= &g d2 0
dl
| eemres .
electrodel
Azgs(o + egs) 1 -1
Ynm(s) = 1 1
odz + (dl1 + d2)=gs R —— C2
Z11(s) = oo
Zo(8) = oo
1 R/sC
Zia(s) = = 4 B/
Ci  R+1/s5C
A A 1dy
C1 = — Cr = it R— -2
L = 504, 2= Ere0y) o A

Werner Riegler, CERN 19



Example,

—

HV

Voltage (4,4)

T

Vo(t) o= 1,(1)
— 1

RD C2

Vi) $=— L)
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Strip Example

What is the effect of a conductive layer between the
readout strips and the place where a charge is moving ?

Werner Riegler, CERN 21



Strip Example

*x=—wi2 =0 x=w/i2

Electrostatic Weighting field (derived from B. Schnizer et. al, CERN-OPEN-2001-074):

_ AV g ) w 2=q&5 cosh[k(p — z)]
B 2) = 52 [T dkcos(Ra)sin (s ) e et D~ (o1 — 22 2) ST~ p)] - (o1 + c0) s —2a) SInGRGa T 1~ P F (o1~ 22)ea  ca) sinninGp + 0 2]

Replace g, > ¢, &, > gyto/s, e;—> gzand perform inverse Laplace Transform
— E,(X,z,t). Evaluation with MATHEMATICA:

Werner Riegler, CERN 22



Strip Example

1= g /o

1,(t) 15(t)

=02 =02 =02
= = =
- 0.15 - 0.15 - 0.15
g g g
) ) )
= 0.1 = 0.1 = 0.1
0.05 |- 0.05 %Z\K 0.05
0 0 ‘&ﬁ 0 ———
0.05 - 0.05 - 0.05 -
0.1 - 0.1 - 0.1 -
0.15 ; ! ; .15 . . . .15
0 0.5 1 15 2 25 3 ()} 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3
T /T T

The conductive layer ‘spreads’ the signals across the strips.

Werner Riegler, CERN 23



Examples for different geometries
with thin resistive layers

Werner Riegler, CERN
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Infinitely extended resistive layer

First we investigate an infinitely extended layer as shown in Fig. 12a. The charge Q will cause

B Z
// Q(X:Yst) y y
Ve
yd
°!
\

r
/ & X
p Q*e(t)
Figure 12: a) A point charge placed at an infinitely extended resistive layer at ¢ = 0. b) The solution for the time dependent
potential is equal to a point charge moving with velocity v olong the z-axis.

@3(x,y,z,t) for z>0

e
< RQY
a) - b)

Q 1 Q 1
¢'3 (T! Z, t) =
ameg /12 + (—z + vt)? dmen /T2 + (z + vt)?

¢1(r,2,t) = (111)
We therefore conclude that the field due to a point charge placed on an infinite resistive layer at t = 0 is
equal to the field of a charge @ that is moving with a velocity v = 1/2¢9 R away from the layer along the
z—axis. As an example for a surface resistivity of R = 1M} /square the velocity is 5.6 cm/ps.

The time dependent surface charge density on the resistive surface is given by

a o
q(r,t) = &0 %lz:ﬂ — €0 % |2=0 (112)
which evaluates to 0 ;
v
=2 113
q(rt) = 5 GRS (113)

The total charge on the resistive surface Qo = fnoo 2rmq(r,t)dr is equal to @ at any time. The peak and
the FWHM of the charge density are given by

Q 1
2 v2t2

The charge is therefore ’diffusing’ with a velocity v, and does not assume a gaussian shape as expected
from a diffusion effect but has 1/r° tails for large values of 7. The radial current I(r) at distance r are
given by

FWHM = 2(4*% —1)Y/2 ~ 1.530t (114)

Qmaz =

2rm 2rm O¢y Qur?
I =gy = TP, QU 115
(r) R (r) R or -0 (r2 + v2£2)3/2 (115)
It is easily verified that the rate of change of the total charge inside a radius r ie. dQ,(t)/dt =

d/dt [; 2r'mq(r’,t),dr’ is equal the the current I(r). Werner Riegler, CERN

A point charge Q is placed on
an infinitely extended resistive
layer with surface resistivity of
R Ohms/square at t=0.

What is the charge distribution
at time t>0 ?

Note that this is not governed
by any diffusion equation.

The solution is far from a
Gaussian.

The timescale is giverned by
the velocity v=1/(2¢,R)

25



Resistive layer grounded on a circle

If we now assume the geometry to be grounded at a radius r = ¢ as shown in Fig, 13a, we use Eq. 41
with g = 0 and have the solution

Jo( j‘m ;
t) e—Jou(t/T—z/c) T = 116
¢1 T2 2 2’J‘TEQC Z JOI'] jm C/'U ( )

and ¢3(r, z,t) = ¢1(r, —2,t). The charge inside the radius ¢ is not a constant but it will disappear with
a characteristic time constant T' = ¢/v by currents flowing into the ’grounded’ ring at r = ¢. As before
we can calculate the surface charge density and charge inside the radius r, which evaluate to

J(] J[),{?‘/C —j[;gt/T 20 ]_ it
E () =2Q) - e dut/T 117
CQ T2(jor) Quarlt) =2Q — JorJ1(Jo) a7)

I(t)/2Q/T)
2.00

100+

050

q(x,y.t)
020+

R Q/ 0.10}

I(t) 0.05}

a) = b) 0% 05 10 15 2077

Figure 13: a) A point charge placed in the center of a resistive layer that is grounded at r = ¢. b) Current flowing to

ground, where the straight line corresponds to the approximation from Eq. 119.

The current flowing into the ’grounded’ ring is then again

_ _thot _ 2rm @ > 1 —jort/T
[t)===4 =g Em=7 ;.Ilﬁjm)e

(118)

One can verify that the total amount of charge flowing to ground fom I(t)dt is again Q. The current can
be pictured to decay with an infinite number of time constants 7, = T/4qi, so for large times the longest

one i.e. T/jo; = 0.42T will dominate and the current decays as I(t). The current is plotted in Fig.

~ 2Q e~ Joit/T
I(t) ~ Th(n © t>T

13b.

(119)

A point charge Q is placed on a
resistive layer with surface
resistivity of R Ohms/square
that is grounded on a circle

What is the charge distribution
at time t>0 ?

Note that this is not governed
by any diffusion equation.

The solution is far from a
Gaussian.

The charge disappears
‘exponentially’ with a time
constant of T=c/v (c is the
radius of the ring)

26



Resistive layer grounded on a rectangle

Next we assume a rectangular grounded boundar
() at position g,y at ¢ = 0 as indicated in Fig. 14¢

),
y=b =

Cl"ﬂ(t). (Xg: Ya)

1t
.L“ q(x.y.t)

= RO/
(0,0) x=a
[ -/Hy(l)
a) =

Figure 14: a) A point charge placed on a resistive layer tha
resistive layer that is grounded on at # = 0 and = a but in:

expression Eq. 42. Assuming the currents pointing to the outside of the boundary, the currents flowing

through the 4 boundaries are

1" B _1 " 9
Imf—ﬁ‘[o —ah:ndy IQm*ﬁfo ~or e=ady

1 g 1 [T 8¢y
Ily—*ﬁfo g lvmod® *’%—ﬁﬁ L

which evaluates to

Qv I =1 1 me . Tz . lmyn g
Li:(t) = —ZZ E—[l—(—l) ]smTOsmTOe Kim vt

L) = 22U %i(—nf [(=1)™ — 1]sin “’% sin ‘E"%e—kmvt

2
a =1 m=1 k"'m
4QU N = m 1 . drxg . lmyg
Lyt) =35> >, T km [1-(=1)] sin —, Sm— e Ko T
I=1 m=1

Ioy(t) = @z Z ?L(*l)m [(~1)" — 1] sin hr% sin hr%e_kimm

(120)

(121)

(122)

(123)

(124)

(125)

In case we want to know the total charge flowing through the grounded sides we have to integrate the

above expressions from ¢ = 0 to oc which results in the same expressions and just e #m®?

replaced by

1/(kymv). These measured currents can be used to find the position of the charge, a principle that is
applied in the MicroCat detector. As an example, Fig. 15 shows the correction map that has to be

applied in case one just uses linear interpolation of the measured charges.

A point charge Q is placed on a
resistive layer with surface
resistivity of R Ohms/square
that is grounded on 4 edges

What are the currents induced
on these grounded edges for
time t>0 ?

y/a
1.0

E 1 | 1 1
R

0.6+

04+

» for the case where the position of the charge is determined by linear |
boundaries of the geometry in Fig. 14a.

27



Resistive layer grounded on two sides and i

y=b

5.4. Resistive layer grounded of >a and insulated at £b.

X=a

=IHDNQ/aT)

200+
100}
050

020+
010+
005+

0.02F

In case the resistive layer is grounded at # = 0,z = a and insulated at y = 0,y = b, as shown in Fig.
14, the currents are only flowing into the grounded elements at = 0 and x = a. We use Eq. 43 and
with some effort the summation can be achieved and evaluates to

1 b 0y o Q
I”(t)__ﬁfg ~hp =0 =

sin(7 2 )

T cosh(4) — cos(m )

sin(m22)

1" g . Q
I2m(t)—§£ _§|x=ady—

B ﬁcosh(%) + cos(m22)

with 7' = 2e2oft — 2 For large times both expressions tend to

I, (t) = I, (t) =~ —% cos (':r

T
_D) e_th
a

(126)

(127)

(128)

Fig. 16 shows the two currents for a charge deposit at position zg = a/4 together with the asymptotic

expression from Eq. 128. The total charge that is flowing through the grounded ends is given by

a— Iy

q = f:c I.(t)dt = Q

g = / Lo (t)dt = Q22
0 a

(129)

so we learn that the charges are just shared in proportion to the distance from the grounded boundary,

equal to the resistive charge division.

Werner Riegler, CERN

| L i i
0 1 2 3 4 5

Figure 16: Currents for the geometry of Fig. 14b for zgp = a/4.

A point charge Q is placed on
a resistive layer with surface
resistivity of R Ohms/square
that is grounded on 2 edges
and insulated on the other
two.

What are the currents induced
on these grounded edges for
time t>0 ?

The currents are monotonic.

Both of the currents approach
exponential shape with atime
constant T.

The measured total charges
satisfy the simple resistive

charge division formulas.
28



Infinitely extended resistive layer with parallel ground plane

Assuming an infinitely extended geometry, the time dependent charge density evaluates to ayb) y 7 [
WY / b
1 [ r gy b b 4
g(r.t) = % 5£ ffJu(ﬁE) exp {*n(l 76_25)?] ds  T= o= 2beg R (134)

It can be verified that Jrum 2rmg(r,t)dr = Q at any time. For long times i.e. large values of t/T" we can
approximate the exponent of the above expression by

k(1 —e-)E o 2t
k(l—e )T ~ -2k T (135) a)
and the integral evaluates to
_Q 1 —ghm Figure 18: a) An infinitely extended resistive layer in presenc
art) = bem 8¢/T © . s radglilus r= c.) Y Y 7
A point charge Q is placed on an infinitely
In analogy to the one dimensional transmission line, the discussed geometry is often assumed to be extended resistive layer with surface reSIStIVIty of
defined by the two dimensional diffusion equation R Ohms/square and a parallel ground plane at t=0.
b0, (Fa Fa) ,_ _=
at#h(axg+ayg) h=1/RC C=73 (137)

What is the charge distribution at time t>0 ?

where C' is the capacitance per unit area between the resistive layer and the grounded plate. The solution
of this equation for a point charge @ put at r = 0,¢ = 0 evaluates exactly to the above Gaussian expression
In Fig. 19 the charge distribution from Eq. 134 is compared to the above Gaussian as well as Eq. 113
for the geometry without a ground plane. Although the order of magnitude is similar, the solution of This process isin princi ple NOT governed by the
the diffusion equation does not work very well. The reason for the discrepancy can be understood when diffusion equ ation
investigating how Eq. 135 is derived: the current j(z,y,t) flowing inside the resistive layer is related to '
the electric field F(z, y.t) in the resistive layer by 7 = E/R. The relation between the current and the
charge density g(z,y,t) is Vj = —8g/8t. With E = —V¢ we then get . o . . .

b0 1 (8% &% In practice is is governed by the diffusion equation

% _E(@J“@) (138) for long times.

If we set ¢ = C'¢ we have the diffusion equation Eq. 135. This relation between voltage and charge(Q =
CU) is however only a good approximation if the charge distribution does not have a significant gradient q(rt=T)/(Q/b2m)
over distances of the order of b. For small times when the charge distribution is very peaked around zero 0.6

this is certainly not a good approximation. It means that for long times when the distribution if very

broad when compared to the distance b the two solutions should approach each other. Indeed this can be s : : —
seen if we calculate the current that is induced on the grounded plate, which we do next. The presence 85 Ch arg € d I St” b Utl on at t_T
of the charge on the resistive layer induces a charge on the grounded metal plane. If we assume that the
metal plane is segmented into strips, as shown in Fig. 20b, we can calculate the induced charge through
the electric field on the surface of the plane. Assuming a strip centred at x = z, with a width of w and
infinite extension in y direction, we find the induced charge to

Tptwf2  poc 8
Qinalt) = f f 02— _ydydz (139)

p—w /2 dz

r/b




Infinitely extended resistive layer with parallel ground plane

In analogy to the one dimensional transmission line, the discussed geometry is often assumed to be
defined by the two dimensional diffusion equation

dq s g, 8%q £0
5 h( Byz) h=1/RC C= b (137)
where C is the capacitance per unit area between the resistive layer and the grounded plate. The solution
of this equation for a point charge @ put at r = 0,f = 0 evaluates exactly to the above Gaussian expression
In Fig. 19 the charge distribution from Eq. 134 is compared to the above Gaussian as well as Eq. 113
for the geometry without a ground plane. Although the order of magnitude is similar, the solution of
the diffusion equation does not work very well. The reason for the discrepancy can be understood when
investigating how Eq. 135 is derived: the current j(z,y,t) flowing inside the resistive layer is related to
the electric field E(z,y,t) in the resistive layer by 7 = E/R. The relation between the current and the
charge density g(z,y,t) is V] = —8q/8%. With E = —V¢ we then get

g 1 (62¢+62¢)
8t R\dz2 ' 8y?

If we set g = C'¢ we have the diffusion equation Eq. 135. This relation between voltage and charge(Q =
CU) is however only a good approximation if the charge distribution does not have a significant gradient
over distances of the order of b. For small times when the charge distribution is very peaked around zero
this is certainly not a good approximation. It means that for long times when the distribution if very
broad when compared to the distance b the two solutions should approach each other. Indeed this can be
seen if we calculate the current that is induced on the grounded plate, which we do next. The presence
of the charge on the resistive layer induces a charge on the grounded metal plane. If we assume that the
metal plane is segmented into strips, as shown in Fig. 20b, we can calculate the induced charge through
the electric field on the surface of the plane. Assuming a strip centred at x = x,, with a width of w and
infinite extension in y direction, we find the induced charge to

(138)

ptw/2 6¢
Qinalt) = f f R — (139)
Tp—wf2 Joo z
which evaluates to
2Q -2
Qinalt) f = cos( ﬁ,— bm(ﬁ%)exp —-k—k(l—e “) dk (140)

The solution of the diffusion equation assumes the relation of a capacitor where the ground plate should
just carry the charge density —g(z,y, t), so the total charge on the strip is

Tp+wf2  poo 2 o+ 2‘2;; —
alt) = f Con fx ol )dzdy = < [erf(r‘” e ;i}) - erf (r T;"Iﬂ (141)

Both expression are shown in Fig. 19b. Although there are significant differences at small times the
curves approach each other for longer times when the charge distribution becomes broad. Indeed, if take
Eq. 139 we see that for large values of £/T" only small values of x contribute to the integral, so if we

expand the exponent as
g L i
—k—k(l—e ) —2x2 142
k—k(l—e )T ~ 2K (142)
the integral evaluates precisely to expression Eq. 140.

What are the charges induced
metallic readout electrodes by
this charge distribution?

Q(x-y-t) y b

ice of a grounded layer. b) The same geometry grounded at a

Qind(t)/Q)

0.10

0.06 |

0.04 |

n.02

] 2 4 6 8 10 12

0.08]

Gaussian approximation

Exact solution

T
]4;'
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Resistive layer grounded on a circle with parallel ground plane

Figure 20: b) The same geometry grounded at a radius r = c.

To conclude this geometry we assume the geometry to be grounded at r = 0 as shown in Fig. 20b.
We proceed as above and the charge (;,: inside the radius ¢ is given by

o0
1 ‘ ajosb/er t
t)y =2 ———— exp |— 1 — e =uv/e) — 142
Q=23 15 p |~ )y (142)

The charge disappears with and infinite number of time constants

T

=
! jm(] —_ e—zjmbfc)

(143)

If the radius of the circle ¢ is much larger than the distance b the longest time constant approximates as

above to 71 & T/jo1. In case b < ¢ we have 71 &~ 0.2¢/b, which tells us that the closer the resistive layer
is to the grounded plane the slower the charge will disappear.

Werner Riegler, CERN
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Uniform currents on resistive layers

°) (ab)

Uniform illumination of the resistive
layers results in ‘chargeup’ and related
potentials.

{ab) d) b, H“ (ab)
s

-(0,0) (a0) x

Figure 21: A uniform current 'impressed’ on the resistive layer will result in a potential distribution that depends strongly
on the boundary conditions. The 4 geometries shown in this figure are discussed.

In this section we want to discuss the potentials that are created on thin resistive layers for uniform
charge deposition. In detectors like RPCs and Resistive Micromegas such resistive layers are used for
application of the high voltage and for spark protection. The resistivity must be chosen small enough to
ensure that potentials that are established on these layers are not influencing the applied electric fields
responsible for the proper detector operation. If such detectors are in an environment of uniform particle
irradiation the situation can be formulated by placing a uniform ’externally impressed’ current per unit
area Ip[A/cm?] on the resistive layer. First we want to investigate the geometry shown in Fig. 21a)
where the layer is grounded on a circle at » = ¢. The charge dg placed on an infinitesimal area at position
ro,¢q after time t is given by dg(t) = Iyrodrodedot, or in the Laplace domain dg(s) = Iyrodrodegg/s?. We
therefore have to replace /s in Eq. 77 by g(s), which results in

f (k 2 S) J_TD R?"Dd?"ndqbg ks f (k z, S)

s k+ 2eqRs €
Since we want to know the steady situation for long times ie. for ¢ — oo we f(k,z,t = o) =
lim,_,osf(k, 2, s) and have

fi(k,2) =

J_TD R?"Dd?"ndqbg —kz

s k+ 2eqRs € (144)

M & ok ) = w ke (145)

Inserting this into Eq. 77 and integration over the area of the disk foc dro fozﬂ dio we find the expression

‘}D Jmf’r‘/c) z
(ryz r,—2) =2¢2RIH Y gLt gluz/e 146
)= ¢3(r,—2) = .:21: 380 Gt) (146)

For z = 0 i.e. on the surface of the resistive layer, the expression can be summed and we have

1 32
é1(r,z =0) = ¢a(r,z=0) = ERIQ(CE —r?) (147)



This expression can also be derived in an elementary way: the total current on a disc of radius r i.e.

r?nly, is equal to the total correct flowing at radius r i.e. 2r7E,/R. This defines the radial field inside . . L.

the layer to E, = RIor/2. With the boundary condition ¢(r) = [ E-(r)dr = 0 we find back the above 7. Uniform currents on thin resistive layers
expression. The maximum potential is therefore in the centre of the disc and is equal to

¢mRIy 1

i 4Ax
For the potentials in the rectangular geometry of Fig. 21b we again have fi, fs from Eq. 145 we just
have to replace rodroddg by dzodyg and perform the integration foa dxg fob dyg of Eq. 77, which results in

o(r =0) =

Rl ~ 0.08 RI,pp = (148)

1 - (=111 - (-1)™]sin(lrz/a) sin(mmy/b) ok
= abRIy—; E E im% (149
ﬁbl(m Y, Z) ¢3 Y, — Z) a U — Lt E3mb/a+m3£a/b ( ) v.
a1 (a,b)
The expression cannot be written in closed form but converges quickly, so numerical evaluation is straight b) ©2

forward. The peak of the potential can be found by setting d¢, /dz = 0,d¢,/dy = 0 and is found at
z = a/2,y = b/2, which is also evident by the symmetry of the geometry. The maximum potential on
the resistive layer is then

oo Do

5 _ qb(g/? b/2 2=0)= —RI Z Z E (_1)I+m
mar — H tEe i oa Lot Lo i (2{_ — 1)3(2m — ]_) -+ (2m — 1)3(2£ — 1)02/52

Figure 21: A uniform current ’impressed’ on the resistive laye
on the boundary conditions. The 4 geometries shown in this 1
For a square geometry (b = @) the sum evaluates to ~ 0.59 so the peak voltage in

Gmas =~ 0.0T4RIya® = 0.074 RI,,; (151)

We see that the value is only less than 10 % different from the peak voltage for the circular boundary in
Eq. 148. For uniform illumination of the geometry Fig. 21c that is grounded at = 0, a and insulated
at y = 0,b we use expression Eq. 7?7 and proceed as before and find

c) . {a,b)
61(2.2) = bala, ~2) = 2R1pa? Y, L= CD)ITT/0) (15 ““ ’

B3
=1

The potential is is independent of y and for z = 0 the sum can be written inclosed form

___________________________________

1
2 a®RI, (153)

Again this expression can be found in an elementary way by the fact that due to symmetry the currents
can only flow in z-direction and the current at z = a/2 must be zero. The total current arriving on the
area of z = a/2 £+ s i.e. 2sblp is equal to the total current flowing at distance s i.e. 2E(s)/Rb. With
z = a/2 + s we find back the above expression. The potential is therefore independent of b. For large
values of b/a the expression Eq. 151 must therefore approach the same value. Indeed for a/b = 0 the
sum evaluates to unity and the expression agree. From Fig. 77 we see that for aspect ratios of 4:1 the
expressions is agree already within 10% of the

(ﬁ‘}l(E,Z = 0) = ;RID(G"?: - m?) ¢maz =

(a,b)

or will result in a potential distribution that depends strong

Finally, in case the layer is only grounded at z = 0 and all other boundaries are insulat figure are discussed.

imum potential is at 2 = a and the results are

) 33
¢1(z) = —RID(Qam z?) ¢mﬂz=§RIDaz (154)



Summary

Theorems for calculating fields and signals in detectors with resistive
elements exist.

Exact solutions for a few basic geometries were given.

The diffusion equation is only an approximate description of charge
diffusion on thin resistive layers.

Under well defined conditions,

specifically when the gradient of the charge distributions over distances
on the order of the ground plane distance are small (t >> T)

the diffusion equation which leads to Gaussian charge distributions can
be applied.
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