

University Mohammed I

Physics Laboratory of Matter and Radiation

Faculty of Sciences Oujda

ATLAS Forward Calorimeter Analysis

KTH/ FSO meeting 28/ 10/ 2015

Malika TOUIL – Yahya TAYALATI

- Reconstruction of energy in Fcal considering only the energy deposited in FC1.
- Cut of Eta between 3.4 & 4.4.
- Cluster energy with a radius of 8cm fitted by double gaussian.
- Energy resolution.
- Position resolution.

Electrons – Energy Reconstruction

- Total cluster energy in FCal with a radius of 8cm.
- Fit with Double gaussian.

Total cluster Energy

Total cluster Energy

Electrons – Reconstruction of energy

- Total cluster energy in FCal with a radius of 8cm.
- Fit with Double gaussian.

Electrons – Reconstruction of energy

- Total cluster energy in FCal with a radius of 8cm.
- Fit with Double gaussian.

Total cluster Energy

Total cluster Energy

Electrons – Reconstruction of energy

- Total cluster energy in FCal with a radius of 8cm.
- Fit with Double gaussian.

Total cluster Energy

Total cluster Energy

Electrons – Resolution of energy

Energy Resolution

Electrons – η Position – fit with double gaussian

Electrons – η Position – fit with double gaussian

Electrons – η Position Resolution

Electrons – φ Position – fit with double gaussian

Electrons – φ Position – fit with double gaussian

Electrons – φ Position Resolution

Phi position resolution

- Reconstruction of energy in Fcal.
- Cut of Eta between 3.5 & 4.1.
- Cluster energy with a radius of 16cm fitted by double gaussian.
- Energy resolution.
- Position resolution.

- Total cluster energy in FCal with a radius of 16cm.
- Fit with Double gaussian.

- Total cluster energy in FCal with a radius of 16cm.
- Fit with Double gaussian.

- Total cluster energy in FCal with a radius of 16cm.
- Fit with Double gaussian.

- Total cluster energy in FCal with a radius of 16cm.
- Fit with Double gaussian.

Pions – Resolution of energy

Energy Resolution

Pions – η Position – fit with double gaussian

Pions – η Position – fit with double gaussian

Pions – η Position Resolution

Eta position resolution

Pions – φ Position – fit with double gaussian

Pions – φ Position – fit with double gaussian

Pions – φ **Position Resolution**

Phi position resolution

Calcul of resolution error

$$d\left(\frac{\sigma}{\mu}\right) = \frac{d\sigma}{2\sigma\mu} + \frac{d\mu}{\sigma\mu}$$

$$d\sigma = \left|\frac{\partial\sigma}{\partial A_{1}}\right| dA_{1} + \left|\frac{\partial\sigma}{\partial A_{2}}\right| dA_{2} + \left|\frac{\partial\sigma}{\partial \mu_{1}}\right| d\mu_{1} + \left|\frac{\partial\sigma}{\partial \mu_{2}}\right| d\mu_{2} + \left|\frac{\partial\sigma}{\partial \sigma_{1}}\right| d\sigma_{1} + \left|\frac{\partial\sigma}{\partial \sigma_{2}}\right| d\sigma_{2}$$
$$d\mu = \left|\frac{\partial\mu}{\partial A_{1}}\right| dA_{1} + \left|\frac{\partial\mu}{\partial A_{2}}\right| dA_{2} + \left|\frac{\partial\mu}{\partial \mu_{1}}\right| d\mu_{1} + \left|\frac{\partial\mu}{\partial \mu_{2}}\right| d\mu_{2} + \left|\frac{\partial\mu}{\partial \sigma_{1}}\right| d\sigma_{1} + \left|\frac{\partial\mu}{\partial \sigma_{2}}\right| d\sigma_{2}$$

$$\frac{\partial \sigma}{\partial A_{1}} = \frac{1}{2\sigma} \left[\frac{\sigma_{1} (\sigma_{1}^{2} + \mu_{1}^{2})(A_{1}\sigma_{1} + A_{2}\sigma_{2}) - \sigma_{1} (A_{1}\sigma_{1} (\sigma_{1}^{2} + \mu_{1}^{2}) + A_{2}\sigma_{2} (\sigma_{2}^{2} + \mu_{2}^{2}))}{(A_{1}\sigma_{1} + A_{2}\sigma_{2})^{2}} - \frac{2}{\left(\frac{A_{1}\sigma_{1}\mu_{1} + A_{2}\sigma_{2}\mu_{2}}{A_{1}\sigma_{1} + A_{2}\sigma_{2}}\right) \left(\frac{\sigma_{1}\mu_{1}(A_{1}\sigma_{1} + A_{2}\sigma_{2}) - \sigma_{1}(A_{1}\sigma_{1}\mu_{1} + A_{2}\sigma_{2}\mu_{2})}{(A_{1}\sigma_{1} + A_{2}\sigma_{2})^{2}}\right) \right]$$

$$\frac{\partial \sigma}{\partial A_2} = \frac{1}{2\sigma} \left[\frac{\sigma_2(\sigma_2^2 + \mu_2^2)(A_1\sigma_1 + A_2\sigma_2) - \sigma_2(A_1\sigma_1(\sigma_1^2 + \mu_1^2) + A_2\sigma_2(\sigma_2^2 + \mu_2^2))}{(A_1\sigma_1 + A_2\sigma_2)^2} - \frac{2(A_1\sigma_1\mu_1 + A_2\sigma_2\mu_2)}{(A_1\sigma_1 + A_2\sigma_2)} \left(\frac{\sigma_2\mu_2(A_1\sigma_1 + A_2\sigma_2) - \sigma_2(A_1\sigma_1\mu_1 + A_2\sigma_2\mu_2)}{(A_1\sigma_1 + A_2\sigma_2)^2} \right) \right]$$

$$\frac{\partial \sigma}{\partial \mu_1} = \frac{1}{2\sigma} \left[\frac{2A_1\mu_1\sigma_1}{A_1\sigma_1 + A_2\sigma_2} - \frac{2A_1\sigma_1(A_1\sigma_1\mu_1 + A_2\sigma_2\mu_2)}{(A_1\sigma_1 + A_2\sigma_2)^2} \right]$$

$$\frac{\partial \sigma}{\partial \mu_2} = \frac{1}{2\sigma} \left[\frac{2A_2\mu_2\sigma_2}{A_1\sigma_1 + A_2\sigma_2} - \frac{2A_2\sigma_2(A_1\sigma_1\mu_1 + A_2\sigma_2\mu_2)}{(A_1\sigma_1 + A_2\sigma_2)^2} \right]$$

$$\begin{aligned} \frac{\partial \sigma}{\partial \sigma_1} &= \frac{1}{2\sigma} \left[\frac{3A_1 \sigma_1^2 (A_1 \sigma_1 + A_2 \sigma_2) - A_1 \left(A_1 \sigma_1 (\sigma_1^2 + \mu_1^2) + A_2 \sigma_2 (\sigma_2^2 + \mu_2^2)\right)}{(A_1 \sigma_1 + A_2 \sigma_2)^2} - \right. \\ & \left. 2 \left(\frac{A_1 \sigma_1 \mu_1 + A_2 \sigma_2 \mu_2}{A_1 \sigma_1 + A_2 \sigma_2} \right) \left(\frac{A_1 \mu_1 (A_1 \sigma_1 + A_2 \sigma_2) - A_1 (A_1 \sigma_1 \mu_1 + A_2 \sigma_2 \mu_2)}{(A_1 \sigma_1 + A_2 \sigma_2)^2} \right) \right] \end{aligned}$$

$$\frac{\partial \sigma}{\partial \sigma_2} = \frac{1}{2\sigma} \left[\frac{3A_2\sigma_2^2(A_1\sigma_1 + A_2\sigma_2) - A_2\left(A_1\sigma_1\left(\sigma_1^2 + \mu_1^2\right) + A_2\sigma_2\left(\sigma_2^2 + \mu_2^2\right)\right)}{(A_1\sigma_1 + A_2\sigma_2)^2} - \frac{2\left(\frac{A_1\sigma_1\mu_1 + A_2\sigma_2\mu_2}{A_1\sigma_1 + A_2\sigma_2}\right)\left(\frac{A_2\mu_2(A_1\sigma_1 + A_2\sigma_2) - A_2(A_1\sigma_1\mu_1 + A_2\sigma_2\mu_2)}{(A_1\sigma_1 + A_2\sigma_2)^2}\right) \right]$$

$$\frac{\partial \mu}{\partial \mu_2} = \frac{A_2 \sigma_2}{A_1 \sigma_1 + A_2 \sigma_2}$$

$$\frac{\partial \mu}{\partial \sigma_1} = \frac{A_1 A_2 \sigma_2 (\mu_1 - \mu_2)}{(A_1 \sigma_1 + A_2 \sigma_2)^2}$$

$$\frac{\partial \mu}{\partial \sigma_2} = \frac{A_1 A_2 \sigma_1 (\mu_2 - \mu_1)}{(A_1 \sigma_1 + A_2 \sigma_2)^2}$$

• Example of 200 GeV electron

EXT F	PARAMETER			STEP	FIRST	
NO.	NAME	VALUE	ERROR	SIZE	DERIVATIVE	
1 /	A1	1.03597e+03	8.58850e+01	8.50433e-02	-3.80759e-05	
2 r	mean1	2.10747e+02	7.96725e-01	1.02389e-03	-4.96627e-03	
3 9	sigmal	1.24234e+01	2.30516e-01	6.40634e-04	-4.72996e-03	
4 /	A2	2.47056e+03	9.54426e+01	1.34486e-01	1.10403e-05	
5 r	mean2	1.97819e+02	2.67662e-01	5.28193e-04	-2.58682e-03	
6 9	sigma2	8.93341e+00	1.38866e-01	3.04350e-04	1.32593e-03	
sigma= 12.0891						
mean= 202.581						
Energy resolution= 0.0596753						
error Energy resolution = 0.00277663						
root [3]						-

$$A_1 = 1000$$
 $A_2 = 2000$

 $\mu_1=200\qquad \qquad \mu_2=200$

 $\sigma_1 = 12$ $\sigma_2 = 8$

$$d\sigma = 11.4$$
 & $d\mu = 0.47$

Value of resolution error