Notes on support table requirements

Alick Macpherson & Phoevos Kardasopoulos

Support table: Conceptual sketch

- Tetrodes moved of-table: circulator and load can be oriented vertically
 - Load balancing of table
- No busbar under table: Simplifies table design
 - No need for additional magnetic shielding

Support table in LSS6

Crab location in LSS6 is larger than LSS4, but transport zone is closer

- Conceptual design now extends into SPS transport lane when CM in-beam position.
 - => FOR SPS access, CM must be in out-of-beam position
 - Feet of table must not extend into transport lane

Alignment constraints

- Alignment Constraints: Assume cavity alignment tolerance transfer to table positioning tolerances
 - From constraints on the cavity in the CM
 - **Cavity Roll:** rotation in the X-Y plane has to be $< 0.3^{\circ}$ (3 σ) per cavity;
 - **Cavity Yaw** (around y-axis) and **Pitch** (around x-axis) with respect to the cryostat axis should be less than 1 mrad (3 σ),
 - Transverse displacement of cavities w.r.t each other inside a cryostat: intra-cavity alignment in the transverse plane with respect to the cryostat axis should not exceed the 0.5 mm (3 σ) tolerance set by the multipolar effects.

Points to note

- Table must cycle in-out of beam:
 - This must be done remotely, and mechanism must withstand >1000 cycles
- Table vertical height fixed: CM height set at installation
 - CM team axis aligned to expected SPS beam axis
- Table only to move in horizontal plane
 - Nominal movement is transverse movement perpendicular to beam axis
 - Drive system must be able to correct for yaw misalignment wrt beam
- RF Power can support up to a 2mm offset of beam wrt cavity axis.
 - Should foresee table positioning of user specified offset
- Table must support/fix 'prongs' of Y-chamber.
 - Also pumping group + bypass line, and BPM
- Cryo flexible line & power coax must absorb transverse movement
 without placing excess stress on CM connections or table drive system
 - Needs input for flexible lines in terms of mechanics and reliability
- Support of circulators and loads have to be designed.
 - Can circulators be mounted vertically on table?

Moving into the beam

- Position Table wrt to beam line
- Installation of cryomodule:
 - Transfer position accuracy of fiduciary marks from CM to table.
 - Ensures CM in-beam position understood in terms of table movement
- Nominal transverse movement = 510 mm with no vertical change
 - Home position is the out-of-beam position
- Movement into beam line
 - Movement of table must be done remotely =. control and monitor system
 - Duration of movement less than 20 minutes (1/2 LHC ramp down time)
 - Acceleration should not exceed 0.2 g
 - Once beam is injected, beam based alignment can be done
 - Target: cavities' axis is aligned to within 1 σ (0.7 mm) of the beam axis.
 - Cryomodule position may imply correction due to longterm orbit drift
 - SPS orbit drift for coasting beams: up to 6mm

Constraints

Load Constraint: Estimated Static load = 500kg

Object	Mass (kg)	Number	Total Mass (kg)
Cryomodule	3000	1	3000
Cryoservice	500	1	500
Tetrode	250	2	500
RF Load	100	2	200
RF Circulator	604	2	1208
			5408

• Tetrodes now not mounted on the table

Positional constraints

Requirements on positioning the CM wrt to its out-of-beam home position

Description	Amount
Transverse movement range (x)	550 mm
Vertical movement range (y)	50 mm
Positioning accuracy	±500 μm
Horizontal precision	±100 µm
Vertical precision	±100 µm
Flatness resolution	±330 µrad

Conceptual Design

- Conceptual design studied and simulated with FEA
 - Eight steel rectangular sections are used to support the transfer table.
 - Table drive system: a ball screw on the two outermost supports
 - Guide rails on other supports: greater support + reduce stress on screws.
 - Supports are directly underneath cryomodule feet
 - Steel frame structure + steel plate used to provide table rigidity.

- Now: No busbar under the table => design can be simplified
- Feet cannot project into transport lane => new conceptual design needed 8