Non-Leptonic Multibody *B* Decays in QCD Factorization: *First Results*

Thomas Mannel

Theoretische Physik I, Universität Siegen work in collaboration with S. Kränkl and J. Virto (1505.04111)

610. Hereaus Seminar, 11.1.2016

Contents

- Introduction
 - Factorization in two-body non-leptonics
- Three-body non-leptonics
 - Preliminaries
 - Regions
 - New Non-Perturbative Input
- Checks and Applications

Introduction

Levels of complexity in B decays

- Purely leptonic f_B
- Inclusive semileptonic: Heavy Quark Expansion (HQE)
- Inclusive Nonleptonic (Lifetimes, Mixing): HQE
- Exclusive semileptonic: F^{B→M}(q²)
- Inclusive FCNC $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$: (HQE + ...)
- Exclusive FCNC $b \to s\ell\ell$ and $b \to s\gamma$: $F^{B \to M}(q^2) + ...$
- Two-Body Non-leptonic: QCD Factorization (QCD-F)
- Multi-Body Non-Leptonic: ???

Make Use of the fact that $\alpha_s(m_b) \ll 1$

Standard theoretical machinery

Effective Hamiltonian

$$H_{ ext{eff}} = rac{G_F}{\sqrt{2}} \sum_i C_i(\mu) O_i(\mu)$$

- C_i : Wilson Coefficients: short distance, $\alpha_s(M_W)$
- O_i: Local operators: Long distance physics
- μ: renormalization point
- Decay amplitudes:

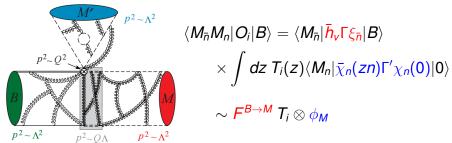
$$\mathcal{A}(B o f) = rac{G_F}{\sqrt{2}} \sum_i C_i(\mu) \langle f| O_i(\mu) | B
angle$$

• How to compute the operator matrix elements?

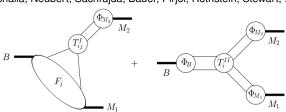
Factorization

- $\langle f|O_i(\mu)|B\rangle$ still contains the large scale m_b
- There are contributions which can be calculated perturbatively: $\alpha_s(m_b)$
- Factorization of these perturbative contributions
- Suitable definition of (universal) non-perturbative quantities
- OPE and Effective Field Theories

Factorization in two-body non-leptonics



(Beneke, Buchalla, Neubert, Sachrajda, Bauer, Pirjol, Rothstein, Stewart, ...)



- Established methodology for two body decays
- Anatomy of $B \to D\pi$ and $B \to \pi\pi$ is understood
- Phenomenology works
- Indications of the presence of subleading terms
- ... but the two body decays are only a small fraction of the total non-leptonic width!
- Clear need for a QCD-based description of multi-body decays

Three-body non-leptonics

Kinematics: $p_B \rightarrow p_1 + p_2 + p_3$

• Two independent kinematical variables $p_i^2 = 0$

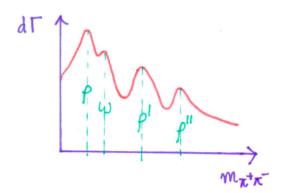
$$s_{ij}^2 = (p_i + p_j)^2$$
 $s_{12} + s_{13} + s_{23} = M_B^2$

Historically:

- "Isobar" Model:
- Description via pseudo two-particle decays:

$$(B o M\,M_1M_2) = (B o M^*M \quad \text{and} \quad M^* o M_1M_2)$$

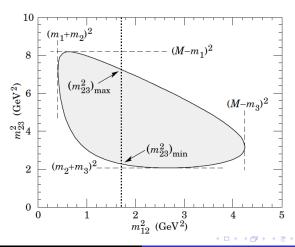
- sum over all possibilities for M^* , including $\Gamma(M^*)$
- possibly add a flat "non-resonant" backgound!



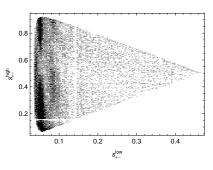
(sketch borrowed from J. Virto)

$B \to \pi\pi\pi$

Study the Dalitz Distribution:



Specifically for $B^+ \to \pi^+\pi^-\pi^+$



Dalitz Plot is symmetric:

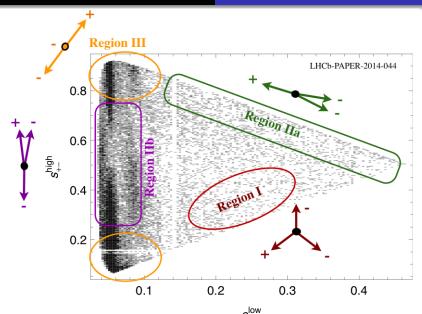
$$egin{array}{ll} s_{12} = s_{+-}^{
m low} & s_{23} = s_{+-}^{
m high} \ s_{12} = s_{++} & \end{array}$$

(Plot form LHCb arXiv:1408.5373)

Regions

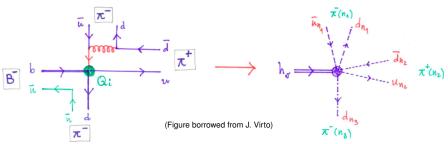
Split the Dalitz Plot into Regions:

- **Region 1:** "Mercedes Star" $s_{++} \sim s_{+-}^{\text{low}} \sim s_{+-}^{\text{high}} \sim 1/3$
- Region 2: Collinear Decay Products
 - Region 2a: $(\pi^+\pi^+)_{\text{coll}}$ recoil against $\pi^ s_{++} \sim 0$, $s_{+-}^{\text{low}} \sim s_{+-}^{\text{high}} \sim 1/2$
 - Region 2b: $(\pi^+\pi^-)_{\text{coll}}$ recoil against π^+ $s_{+-}^{\text{low}} \sim 0$, $s_{++} \sim s_{+-}^{\text{high}} \sim 1/2$
- Region 3: Soft Decay Products
 - **Region 3a:** Soft π^+ $s_{++} \sim s_{+-}^{\text{low}} \sim 0$ $s_{+-}^{\text{high}} \sim 1$
 - Region 3b: Soft $\pi^ s_{+-}^{\rm low}\sim_{+-}^{\rm high}\sim 0,\quad s_{++}\sim 1$



Region 1: The Center

Three "disconnected" collinear directions: n₁ n₂ n₃

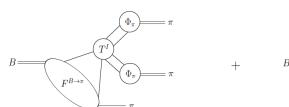


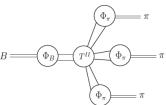
$$\langle \pi_{n_1}^- \pi_{n_2}^+ \pi_{n_3}^- | O_i | B \rangle = \langle \pi_{n_3}^- | \bar{\boldsymbol{d}}_{n_3} \Gamma_3 \boldsymbol{h}_{\boldsymbol{v}} | B \rangle$$

$$\times \int \boldsymbol{d} \boldsymbol{u} \boldsymbol{d} \boldsymbol{v} \, T_i(\boldsymbol{u}, \boldsymbol{v}) \langle \pi_{n_1}^- | \bar{\boldsymbol{d}}_{n_1}(\bar{\boldsymbol{u}}) \Gamma_1 \boldsymbol{u}_{n_1}(\boldsymbol{u}) | 0 \rangle \langle \pi_{n_2}^+ | \bar{\boldsymbol{u}}_{n_2}(\bar{\boldsymbol{v}}) \Gamma_2 \boldsymbol{d}_{n_2}(\boldsymbol{v}) | 0 \rangle$$

$$\sim \boldsymbol{F}^{B \to \pi} \, T_i \otimes \phi_{\pi} \otimes \phi_{\pi}$$

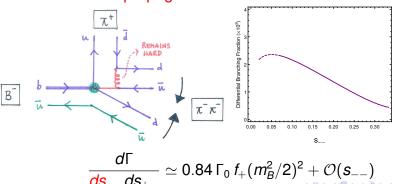
- $1/m_b^2$ and α_s supressed with repect to a two body decay
- At leading order / leading power / leading twist all convolutions are finite
 → factorization:





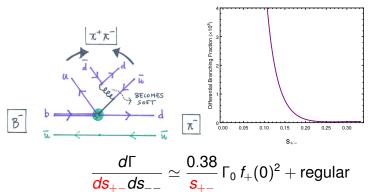
Extrapolation to collinear $\pi^-\pi^-$

- There are no resonances in this channel
- No infrared / collinear problems expected
- Perturbative result expected to be regular: No "soft" propagators



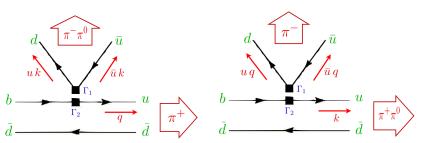
Extrapolation to collinear $\pi^+\pi^-$

- There are resonances in this channel: ρ . ω , ...
- Perturbative result expected to be IR singular
- "soft" propagators



Region 2b: new non-perturbative input

- Factorization breaks down in the resonance regions
- New, nonperturbative input is needed
- Three-body decay resembles two-body decay



Operators are the same as in two-body decays ...

... but the final states are different

$$\begin{split} &\langle \pi_{\bar{n}}^{-} \pi_{\bar{n}}^{+} \pi_{n}^{-} | O_{i} | B \rangle = \\ &\langle \pi_{n}^{-} | \bar{h}_{\nu} \Gamma \xi_{n} | B \rangle \times \int dz \ T_{1}(z) \langle \pi_{\bar{n}}^{-} \pi_{\bar{n}}^{+} | \bar{\chi}_{\bar{n}}(z\bar{n}) \Gamma' \chi_{\bar{n}}(0) | 0 \rangle \\ &+ \langle \pi_{\bar{n}}^{-} \pi_{\bar{n}}^{+} | \bar{h}_{\nu} \Gamma \xi_{\bar{n}} | B \rangle \times \int dz \ T_{2}(z) \langle \pi_{n}^{-} | \bar{\chi}_{\bar{n}}(zn) \Gamma' \chi_{n}(0) | 0 \rangle \\ &\sim F^{B \to \pi} \ T_{1} \otimes \phi_{\pi\pi} + F^{B \to \pi\pi} T_{2} \otimes \phi_{\pi} \end{split}$$

- Two-Pion light-cone distribution (Polyakov, Diehl, Gousset, ...)
- Generalized (soft) Form factor (Feldmann, Khofjamirian, van Dyk, ThM ...)

• Factorization formula similar to the two-body case

$$B = \begin{array}{c|c} & \pi_a \\ \hline T^l \\ T^l \\ \hline T^l \\ T^l \\ \hline T^l \\ T^l$$

Two-Pion Light Cone Distribution

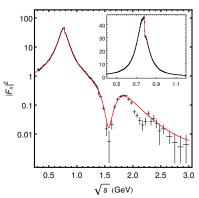
• Definition: $s = (k_1 + k_2)^2$, $k_1 = \zeta k_{12}$, $k_2 = \overline{\zeta} k_{12}$]

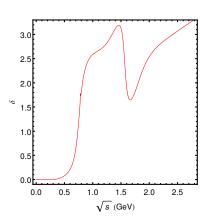
$$\phi_{\pi\pi}^{m{q}}(m{z},m{\zeta},m{s}) = \int rac{dx^{-}}{2\pi} e^{iz(k_{12}^{+}x^{-})} \langle \pi^{+}(k_{1})\pi^{-}(k_{2})|ar{q}(x^{-}n_{-})m_{+}q(0)|0
angle$$

Normalization from the local limit:

$$\int dz \, \phi_{\pi\pi}(z,\zeta,s) = (2\zeta - 1)F_{\pi}(s) \quad \text{(pion time-like FF)}$$

- $F_{\pi}(s)$: Data (BaBar) + Theory (χPT , Asymptotics...)
- z and ζ dependence asymptotically known





(Hanhart, Kubis, ...)

Timelike Pion Form Factor known from Data

Generalized (soft) Form factor

Relevant Form factor:

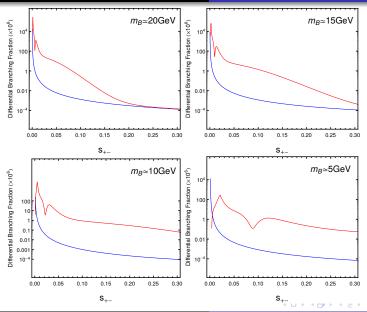
$$\langle \pi^+(k_1)\pi^-(k_2)|\,\bar{u}k_3P_{L,R}b\,|B^-(p)\rangle = \mp \frac{m_\pi}{2}F_t(\zeta,s)$$

• $F_t(\zeta, s)$ can be related to the two-pion light-cone distribution via a Light-Cone Sum Rule (Khodjamirian, Hambrock)

$$F_t(\zeta, \boldsymbol{s}) = \frac{m_b^2}{\sqrt{2}\hat{f}_B m_\pi} \int_{u_0}^1 \frac{du}{u} \, \exp\left[\frac{(1+s\bar{u})m_B^2}{M^2} - \frac{m_b^2}{uM^2}\right] \phi_{\pi\pi}(\boldsymbol{u}, \zeta, \boldsymbol{s})$$

Merging the Regions ...

- The starting point is the large- m_b limit
- Do the regions match properly?
- Is m_b large enough?
- Is there a central region for $m_b \sim 5$ GeV?



- Probably there is no perturbatively calculable central region for realistic m_b
- For realistic m_b the Dalitz plot consists only of edges
- Three-body decays become quasi two-body
- The factorzation formula is the one knwon form the two-body decays with new non-perturbative input
- These are just first results, many more checks need to be performed.

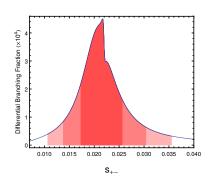
First Application: $B \rightarrow \rho \pi$

• Amplitude near $s_{+-} \ll m_b^2$

$$\mathcal{A} \sim rac{G_F}{\sqrt{2}} ig[4 m_B^2 f_0(s_{+-}) (2 \zeta - 1) m{\mathcal{F}}_\pi(s_{+-}) (a_2 + a_4) \ + f_\pi m_\pi (a_1 - a_4) m{\mathcal{F}}_t(\zeta, s_{+-}) ig]$$

• Definition of the ρ : Integration around the ρ mass:

$$BR(B^- o
ho \, \pi^-) \simeq \int_0^1 ds_{++} \int_{s_o^-}^{s_
ho^+} ds_{+-} \; rac{ au_B \, m_B |\mathcal{A}|^2}{32 (2\pi)^3}$$



with
$$s_{
ho}^{\pm}=(m_{
ho}\pm n\Gamma_{
ho})^2/m_{B}^2$$

$$BR(B^+ \to \rho \pi^+) \simeq 9.4 \cdot 10^{-6} \quad (n = 0.5)$$

$$BR(B^+ \to \rho \pi^+) \simeq 12.8 \cdot 10^{-6}$$
 $(n = 1)$

$$BR(B^+ \to \rho \pi^+) \simeq 14.1 \cdot 10^{-6} \quad (n = 1.5)$$

$$BR(B^+ \to \rho \pi^+)_{\text{EXP}} = (8.3 \pm 1.2) \cdot 10^{-6}$$

$$BR(B^+ \to \rho \pi^+)_{QCDF} = (11.9^{+7.8}_{-6.1}) \cdot 10^{-6}$$

CP Violation Studies

- Three-Body Decays contain more information than two-body:
- Compare the Dalitz Plots of B⁺ vs. B⁻
- Bin-wise asymmetry

$$\Delta(i) = \frac{N(i) - N(i)}{N(i) + \bar{N}(i)}$$

 MIranda Procedure: Use the significance (well suited for "noisy" data)

$$\mathcal{S}_{ ext{CP}}(i) = rac{\mathcal{N}(i) - ar{\mathcal{N}}(i)}{\sqrt{\mathcal{N}(i) + ar{\mathcal{N}}(i)}}$$

= more robust probe of CP violation

(Bediga, Bigi, et al. ...)

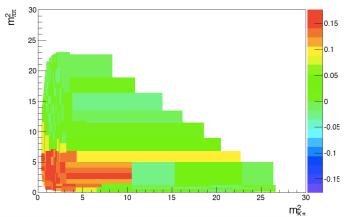
- CP Violation is distributed over the Dalitz plot
- Strong phases depend on the bin: eg. Breit Wigner

$$\operatorname{Im} BW(s) = rac{m_R \Gamma_R}{(m_R^2 - s)^2 + m_R^2 \Gamma_R^2}$$

• Expample: $B \to K\pi\pi$: Interferences between different channels e.g $B \to K^*\pi \to K\pi\pi$ and $B \to K\rho \to K\pi\pi$

Expample: $B \to K\pi\pi$: $\Delta(i)$

(Model Calculation taken from Bediga et al., 1205.3036)



Needs to be worked out in QCD-Factorization

Summary

- Multi-body decays ...
 - ... are abundant
 - ... contain important information in their kinematic distributions
 - ... are theoretically most complex
- QCD based Ansatz: QCD factorization
- No perturbative central region, even for B decays
- Quasi two-body with new non-perturbative input

More work needed to establish QCD-Factoriztion!

