Update on top pair production at 380 GeV

Ignacio García

IFIC (Valencia)

CLICdp WG Analysis Meeting 17/11/2015 CERN

Outline

- Jet reconstruction optimisation
 - Timing cuts
 - Jet algorithm parameters
 - Choosing the most optimal configuration
- From ILC@500GeV to CLIC@380GeV (NEWS)
- Top quark couplings studies at CLIC@380GeV
 - Lepton+jets tt CLIC@380GeV reconstruction
 - · Observables
 - · CP conserving top quark couplings uncertainties
 - Preliminary studies of the CPV top quark couplings

Conclusions

Timing cuts impact in jet reconstruction

1) For a R=1.4 using **all PFOs** without timing cuts M_{top} is clearly degraded for both algorithms

2) Selected timing cuts seem too hard at 380GeV -> ~5GeV below the M_{top} expected value

Jet Algorithms performance

Use **PandoraPFANewPFOs** collection with a **small R** or use **Loose** collection with a **large R**??

Loose + large R offers better jet performance

Choosing the jet algorithm

• Top mass hadronic candidate mean value and width have been taken for choosing the best configuration for the jet reconstruction

		Timing cuts					
	Parameters	PFOs		Loose		Selected	
Jet algorithm		Mtop [GeV]	σ [GeV]	Mtop [GeV]	σ [GeV]	Mtop [GeV]	σ [GeV]
	R=1.2 β=γ=1	-	-	-	-	166	10
	R=1.2 β=1 γ=1.4	174.5	10.3	-	-	-	-
VLC	R=1.4 β=γ=1	176.7	11.2	170	8.9	-	-
VLC	R=1.6 β=γ=1	-	-	170.6	9	-	-
	R=1.6 β=γ=0.8	-	-	171.3	8.7	-	-
	R=1.8 β=γ=0.8	-	-	171.5	9.2	-	-
	R=1	177	11.8	-	-	-	-
l ong lov k	R=1.2	180.2	13.5	-	-	-	-
Long. Inv. k _t	R=1.4	183.0	15.6	171.3	9.0	168.4	9.6
	R=1.5	-	-	171.6	9.1	-	-

Choosing the jet algorithm

• VLC jet algorithm with R=1.6 β = γ =0.8

		Timing cuts					
	Parameters	PFOs		Loose		Selected	
Jet algorithm		Mtop [GeV]	σ [GeV]	Mtop [GeV]	σ [GeV]	Mtop [GeV]	σ [GeV]
	R=1.2 β=γ=1	-	-			166	10
	R=1.2 β=1 γ=1.4	174.5	10.3			-	-
VLC	R=1.4 β=γ=1	176.7	11.2			-	-
VLC	R=1.6 β=γ=1	-	-	170.6	9	-	-
	R=1.6 β=γ=0.8	-	-	171.3	8.7	-	-
	R=1.8 β=γ=0.8	-	-	171.5	9.2	-	-
	R=1	177	11.8	-	-	-	-
	R=1.2	180.2	13.5			-	-
	R=1.4	183.0	15.6			168.4	9.6
	R=1.5	-	-			-	-

From ILC@500GeV to CLIC@380GeV

	ILC@500GeV	CLIC@380GeV
√s	500 GeV	380 GeV
E _{top}	250 GeV	190 GeV
BX rate	300 ns	0,67 ns
γγ→hadrons	1.7 γγ→had/BX	0.0464 γγ → had/ BX
PFOs Collections	PandoraPFOs	PandoraPFANewPFOs LoosePandoraPFANewPFOs TightPandoraPFANewPFOs SelectedPandoraPFANewPFOs
Detector Model	ILD_o1_v05	CLIC_ILD_CDR500
Beam polarisation	P _{e-} =±100% P _{e+} =∓100%	P _{e-} =±80% P _{e+} =0%
ISR/FSR	YES	YES

lepton+jets tt CLIC@380GeV reconstruction

The **signal is reconstructed** by choosing the combination of *b* quark jet and W boson that minimises the following equation

$$\chi^{2} = \left(\frac{M_{t} - 172.5}{\sigma_{M_{top}}}\right)^{2} + \left(\frac{E_{t} - 190}{\sigma_{E_{top}}}\right)^{2} + \left(\frac{E_{b}^{*} - 68}{\sigma_{E_{b}^{*}}}\right)^{2} + \left(\frac{\cos\theta_{bW} + (-0.6)}{\sigma_{\cos\theta_{bW}}}\right)^{2}$$

Selection cuts:

- Semi-leptonic events ->1 lepton event
- *b*-tag values: *b-tag*₁ > 0.8 & *b-tag*₂ > 0.5

The entire selection retains:

- **59.3%** for the configuration $P(e^-) = -0.8$ (Left-handed electrons)
- **53.7%** for $P(e^-) = +0.8$ (Right-handed electrons)

Top and W mass distributions

We observe a **shift of ~1 GeV** in the mean value of the W and top candidates mass distributions (expected values $M_W=80.4$ GeV and $M_{top}=172.5$ GeV)

Is not posible to recover the **particles removed by the Loose timing cut** even with the best jet performance -> *Solution: "UltraLoose" selection?*?

Forward-Backward Asymmetry

A_{FB} much smaller and migrations due to ambiguity in b-W pairing more severe at 380 GeV than at 500 GeV (esp. for -80%, +30% polarization)

Curing migration

 χ^2 < 1 (very tight cut -> lower statistics)

Reconstruction efficiency ~18%

P	Pe-	A _{FB} ^{MC}	A _{FB}	A _{FB} (χ ² < 1)	
-8	0 %	0,185	0,096	0,172	
+8	0 %	0,227	0,194	0,211	

Observables and couplings

- Total cross section (σ)
- The Forward-Backward Asymmetry (A_{FB})

$$\begin{aligned} \sigma(+) & A_{FB}(+) & (+ = e_{\overline{R}}) \\ \sigma(-) & A_{FB}(-) & (- = e_{\overline{L}}) \end{aligned} \\ \Rightarrow \begin{cases} F_{1V}^{\gamma} & * & F_{2V}^{\gamma} \\ F_{1V}^{Z} & F_{1A}^{Z} & F_{2V}^{Z} \end{cases} \end{aligned}$$

So once 4 observables are measured, we can obtain the following **CP conserving 5 couplings** separately in groups of 3 (F_{1X}) and 2 (F_{2X})

 $F_{1A}^{\gamma} \quad = 0 \;\; {\rm always} \; {\rm because} \; {\rm of} \; {\rm the} \; {\rm gauge} \; {\rm invariance} \;$

CLIC, √s=380GeV L=500fb⁻¹

$\mathcal{P}_{e^-},\mathcal{P}_{e^+}$	$(\delta\sigma/\sigma)_{\rm stat.}$ (%)	$(\delta A_{\rm FB}^t/A_{\rm FB}^t)_{\rm stat.}$ (%)		
-0.8, 0	0.81	4.6		
+0.8, 0	0.90	5.5		

Similar precision to ILC except for the coupling F_{IA}^{Z} that suffers the large statistical error of $A_{FB} \sim 5\%$

$$\Gamma^{t\bar{t}X}_{\mu}(k^2, q, \bar{q}) = ie \left\{ \gamma_{\mu}(F^X_{1V}(k^2) + \gamma_5 F^X_{1A}(k^2)) - \frac{\sigma_{\mu\nu}}{2m_t}(q + \bar{q})^{\nu}(iF^X_{2V}(k^2) + \gamma_5 F^X_{2A}(k^2)) \right\},$$

CPV observables studies

The "baseline" study is limited to CP-conserving form factors, but **e+e-** is known to **do well also** for CP-violationg F_{2A} at least since TESLA times

Reconstructing **optimal CP observables** from W. Bernreuther et. al. arXiv:hep-ph/9602273 that measure differences in top polarization orthogonal to production plane and also differences in top quark flight direction. In the lepton + jets final state:

These observables have simple relations to the four $F_{2\text{A}}$ form factors

$$A^{Re}_{\gamma,Z} = \langle O^{Re}_+ \rangle - \langle O^{Re}_- \rangle = c_{\gamma} [PRe(F^{\gamma}_{2A}) + KZRe(F^{Z}_{2A})]$$

$$A^{Im}_{\gamma,Z} = \langle O^{Im}_+ \rangle - \langle O^{Im}_- \rangle = d_{\gamma} [Im(F^{\gamma}_{2A}) + PKZIm(F^{Z}_{2A})]$$

CPV observables preliminary results

No migrations observed for these observables -> No χ^2 cut needed

50-60% efficiency retained (better statistics than for A_{FB})

Left-handed electron	Mean value Reco	RMS	δstat (500fb⁻¹)		Uncertainty	CLIC@380GeV 500 fb ⁻¹	ILC@500GeV 500 fb ⁻¹	TDR TESLA 300 fb ⁻¹
ORe+	0,00134	0,47	0,001	Standard Error propagation	Re{F₂aŸ}	0,004	0,004	0,007
ORe-	0,0014	0,47	0,001					
Olm+	-0,0295	0,52	0,001		$Re{F_{2A}Z}$	0,007	0,006	0,008
Olm-	-0,0285	0,52	0,001		Im{F _{2A} γ}	0,004	0,006	0,008
ARe	-0,0001	-	0,001					
Alm	-0,0010	-	0,002		Im{F _{2A} ^z }	0,007	0,010	0,010

The potential of CLIC@380 GeV for measuring CPV couplings, assuming a $L = 500 \text{ fb}^{-1}$, is comparable to previous studies

Summary and conclusions

- · LoosePandoraPFANewPFOs with VLC jet algorithm (R=1.6 β = γ =0.8) offers the best jet reconstruction
- We have to cut very hard in the χ^2 to cure the migration on A_{FB} -> we pay a high price in statistics (~18%)
 - It translates into a statistical error of ~5% for A_{FB} that increases the uncertainty in the top quark couplings -> An improvement of the quality cuts is needed or more statistics
 - A great precision in the measurement of CPV couplings could be reached with e+e->tt CLIC@380GeV (L=500fb⁻¹)
 - It would interesting to extend the study to CLIC@500 GeV (cross check), CLIC@1.4TeV (boosted tops, minor migrations due to ambiguity Wb pairing)

Thank you for your attention

BACKUP SLIDES

Valencia Jet Algorithm

A robust jet reconstruction algorithm for high-energy lepton colliders doi:10.1016/j.physletb.2015.08.055

A new clustering jet reconstruction algorithm that combines the good features of lepton collider algorithms, in particular the **Durham-like distance criterion;**

$$d_{ij} = min(E_i^{2\beta}, E_j^{2\beta})(1 - \cos \theta_{ij})/R^2$$

with the **robustness against background of** the longitudinally

invariant kt algorithm

$$d_{iB} = E^{2\beta} \sin^{2\gamma} \theta_{iB}$$

The γ parameter governs the evolution of the jet area with polar angle and β allows to **change the clustering order.**

*In the default settings the two exponents β and γ are equal. For $\beta = \gamma = 1$ the expression simplifies to $d_{iB} = E^2 \sin^2 \theta_{iB} = p_{ti}^2$

The (β , γ) space

Jet reconstruction performance

• Events are selected in which the top pair decays semi-leptonically

Event generation

- 1) WHIZARD: event generation (samples for the DBD)
- 2) PYTHIA: Parton shower and hadronisation
- 3) FASTJET: Durham for primary jet reconstruction and Long. Inv. k_t for $\gamma\gamma \rightarrow$ hadrons removal

Event selection

 The signal is reconstructed by choosing the combination of b quark jet and W boson that minimises the following equation:

$$d^{2} = \left(\frac{m_{cand.} - m_{t}}{\sigma_{m_{t}}}\right)^{2} + \left(\frac{E_{cand.} - E_{beam}}{\sigma_{E_{cand.}}}\right)^{2} + \left(\frac{p_{b}^{*} - 68}{\sigma_{p_{b}^{*}}}\right)^{2} + \left(\frac{\cos\theta_{bW} - 0.23}{\sigma_{\cos\theta_{bW}}}\right)^{2}$$

- Some cuts:
 - Hadronic mass of the final state: $180 < m_{had.} < 420 \,\text{GeV}$
 - Reconstructed W mass: $50 < m_W < 250 \,\text{GeV}$
 - Reconstructed top mass: $120 < m_t < 270 \, \text{GeV}$
 - Isolated lepton: the best candidate
- **b-tag values**: b-tag₁ > 0.8 & b-tag₂ > 0.3
- The entire selection retains:
 - **51.9%** for the configuration P,P' = -1,+1 (Left-handed electrons)
 - **55.0%** for P,P' = +1, -1 (Right-handed electrons)

lepton+jets tt ILC@500GeV

- This study, based on a detailed simulation of the ILD detector concept for ILC, assumes a $\sqrt{s}=500$ GeV and L=500fb⁻¹ and polarised beams.
- · The vector, axial and tensorial CP conserving couplings are extracted separately for the Z and γ component
- A way to describe the current of ttZ^0 and tt_{γ} primary vertices:

$$\begin{array}{c} \overset{\circ}{X} = Z^{0}, \gamma \\ \overset{\circ}{V} = \textit{Vector coupling} \\ \overset{\circ}{A} = \textit{Axial coupling} \end{array} \\ \Gamma^{t\bar{t}X}_{\mu}(k^{2}, q, \bar{q}) = ie \left\{ \gamma_{\mu}(F^{X}_{1V}(k^{2}) + \gamma_{5}F^{X}_{1A}(k^{2})) \right\}_{e^{-}} \\ - \frac{\sigma_{\mu\nu}}{2m_{t}}(q + \bar{q})^{\nu}(iF^{X}_{2V}(k^{2}) + \gamma_{5}F^{X}_{2A}(k^{2})) \right\},$$

A precise characterisation of the top quark electro-weak vertices at the ILC arXiv:1505.06020

From ILC@500GeV to CLIC@380GeV

- ee→ 6 fermions samples (selecting only lepton+jets decays) from the Monte Carlo samples for top reconstruction studies (<u>https://twiki.cern.ch/twiki/bin/</u><u>view/CLIC/MonteCarloSamplesForTopPhysics</u>)
- ILCDirac software (Marlin, FastJet, Pandora...)
- Full simulation CLIC_ILD_CDR500 detector model
- Jet algorithms: Longitudinally invariant kt and Valencia jet algorithm
- Analysis chain and the code (adapted) from ILC@500GeV studies

