Update on top pair production at 380 GeV

Ignacio García
IFIC (Valencia)

CLICdp WG Analysis Meeting 17/11/2015 CERN

Outline

- Jet reconstruction optimisation
- Timing cuts
- Jet algorithm parameters
- Choosing the most optimal configuration
- From ILC@500GeV to CLIC@380GeV (NEWS)
- Top quark couplings studies at CLIC@380GeV
- Lepton+jets tt CLIC@380GeV reconstruction
- Observables
- CP conserving top quark couplings uncertainties
- Preliminary studies of the CPV top quark couplings
- Conclusions

Timing cuts impact in jet reconstruction

1) For a $R=1.4$ using all PFOs without timing cuts $\mathbf{M}_{\text {top }}$ is clearly degraded for both algorithms
2) Selected timing cuts seem too hard at 380 GeV -> $\sim 5 \mathrm{GeV}$ below the $\mathrm{M}_{\text {top }}$ expected value

Jet Algorithms performance

Loose + large R offers better jet performance

Choosing the jet algorithm

- Top mass hadronic candidate mean value and width have been taken for choosing the best configuration for the jet reconstruction

		Timing cuts					
Jet algorithm	Parameters	PFOs		Loose		Selected	
		Mtop [GeV]	$\sigma[\mathrm{GeV}]$	$\begin{gathered} \text { Mtop } \\ \text { [GeV1 } \end{gathered}$	- [GeV]	Mtop	o [GeV]
VLC	$\mathrm{R}=1.2 \beta=\mathrm{y}=1$	-	-	-	-	166	10
	$\mathrm{R}=1.2 \mathrm{\beta}=1 \mathrm{y}=1.4$	174.5	10.3	-	-	-	-
	$\mathrm{R}=1.4 \beta=\mathrm{y}=1$	176.7	11.2	170	8.9	-	-
	$\mathrm{R}=1.6 \beta=\mathrm{y}=1$	-	-	170.6	9	-	-
	$\mathrm{R}=1.6 \beta=\gamma=0.8$	-	-	171.3	8.7	-	-
	$\mathrm{R}=1.8 \beta=\gamma=0.8$	-	-	171.5	9.2	-	-
Long. Inv. $\mathbf{k}_{\text {t }}$	$\mathrm{R}=1$	177	11.8	-	-	-	-
	$\mathrm{R}=1.2$	180.2	13.5	-	-	-	-
	$\mathrm{R}=1.4$	183.0	15.6	171.3	9.0	168.4	9.6
	$\mathrm{R}=1.5$	-	-	171.6	9.1	-	-

Choosing the jet algorithm

- VLC jet algorithm with $R=1.6 \beta=\gamma=0.8$

Jet algorithm	Parameters	Timing cuts					
		PFOs		Loose		Selected	
		Mtop [GeV]	o [GeV]	Mtop [GeV]	o [GeV]	Mtop [GeV]	o [GeV]
VLC	$\mathrm{R}=1.2 \beta=\gamma=1$	-	-			166	10
	$\mathrm{R}=1.2 \beta=1 \mathrm{p}=1.4$	174.5	10.3			-	-
	$\mathrm{R}=1.4 \beta=\gamma=1$	176.7	11.2	170	8.9	-	-
	$\mathrm{R}=1.6 \beta=\gamma=1$	-	-	17 n		-	-
	$\mathrm{R}=1.6 \beta=\gamma=0.8$	-	-	171.3	8.7	-	-
	$R=1.8 \beta=\gamma=0.8$	-	-			-	-
_ong. Inv.	$\mathrm{R}=1$	177	11.8			-	-
	$\mathrm{R}=1.2$	180.2	13.5			-	-
	$\mathrm{R}=1.4$	183.0	15.6	71	9.0	168.4	9.6
	$\mathrm{R}=1.5$	-	-	-	1	-	-

From ILC@500GeV to CLIC@380GeV

	ILC@500GeV	CLIC@380GeV
$\sqrt{ }$ s	500 GeV	380 GeV
$E_{\text {top }}$	250 GeV	190 GeV
BX rate	300 ns	0,67 ns
$\gamma \gamma \rightarrow$ hadrons	$1.7 \gamma \gamma \rightarrow \mathrm{had} / \mathrm{BX}$	$0.0464 \gamma \gamma \rightarrow \mathrm{had} / \mathrm{BX}$
PFOs Collections	PandoraPFOs	PandoraPFANewPFOs LoosePandoraPFANewPFOs TightPandoraPFANewPFOs SelectedPandoraPFANewPFOs
Detector Model	ILD_01_V05	CLIC_ILD_CDR500
Beam polarisation	$\mathrm{P}_{\mathrm{e}-}= \pm 100 \% \mathrm{P}_{\mathrm{e}+}=\mp 100 \%$	$\mathrm{P}_{\mathrm{e}-}= \pm 80 \% \mathrm{P}_{\mathrm{e}+}=0 \%$
ISR/FSR	YES	YES

lepton+jets tt CLIC@380GeV reconstruction

The signal is reconstructed by choosing the combination of b quark jet and W boson that minimises the following equation

$$
\chi^{2}=\left(\frac{M_{t}-172.5}{\sigma_{M_{\text {top }}}}\right)^{2}+\left(\frac{E_{t}-190}{\sigma_{E_{\text {top }}}}\right)^{2}+\left(\frac{E_{b}^{*}-68}{\sigma_{E_{b}^{*}}}\right)^{2}+\left(\frac{\cos \theta_{b W}+(-0.6)}{\sigma_{\operatorname{coss}_{b W}}}\right)^{2}
$$

Selection cuts:

- Semi-leptonic events $->1$ lepton event
- b-tag values: $\boldsymbol{b}-\operatorname{tag}_{1}>0.8 \&$ b-tag $_{2}>0.5$

The entire selection retains:

- 59.3\% for the configuration $P\left(e^{-}\right)=-0.8$ (Left-handed electrons)
- 53.7\% for $\mathrm{P}\left(\mathrm{e}^{-}\right)=+0.8$ (Right-handed electrons)

Top and W mass distributions

We observe a shift of $\mathbf{\sim 1} \mathbf{G e V}$ in the mean value of the W and top candidates mass distributions (expected values $\mathrm{M}_{\mathrm{w}}=80.4 \mathrm{GeV}$ and $\mathrm{M}_{\text {top }}=172.5 \mathrm{GeV}$)

Is not posible to recover the particles removed by the Loose timing cut even with the best jet performance -> Solution: "UltraLoose" selection??

Forward-Backward Asymmetry

Afb much smaller and migrations due to ambiguity in b-W pairing more severe at 380 GeV than at 500 GeV (esp. for -80\%, $+30 \%$ polarization)

Curing migration

$\chi^{2}<1$ (very tight cut -> lower statistics)
Reconstruction efficiency $\sim 18 \%$

Pe-	A $_{\text {FB }}{ }^{\text {MC }}$	AFB	AFB $^{\left(\chi^{2}<1\right)}$
-80%	0,185	0,096	0,172
$+80 \%$	0,227	0,194	0,211

Observables and couplings

- Total cross section (σ)
- The Forward-Backward Asymmetry (A_{FB})
$\left.\begin{array}{lll}\sigma(+) & A_{F B}(+) & \left(+=e_{R}^{-}\right) \\ \sigma(-) & A_{F B}(-) & \left(-=e_{L}^{-}\right)\end{array}\right\} \Rightarrow\left\{\begin{array}{ccc}F_{1 V}^{\prime} & * & F_{2 V}^{\prime} \\ F_{1 V}^{z} & F_{1 A}^{z} & F_{2 V}^{z}\end{array}\right\}$

So once 4 observables are measured, we can obtain the following CP conserving 5 couplings separately in groups of $3\left(F_{1 x}\right)$ and $2\left(F_{2 x}\right)$
$F_{1 A}^{\gamma}=0$ always because of the gauge invariance
CLIC, $\sqrt{ } \mathbf{s}=380 \mathrm{GeV}$ L=500fb ${ }^{-1}$

$\mathcal{P}_{e^{-}}, \mathcal{P}_{e^{+}}$	$(\delta \sigma / \sigma)_{\text {stat. }}(\%)$	$\left(\delta A_{\mathrm{FB}}^{t} / A_{\mathrm{FB}}^{t}\right)_{\text {stat. }}(\%)$
$-0.8, \quad 0$	0.81	4.6
+0.8,	0	0.90

Similar precision to ILC except for the coupling $\boldsymbol{F}_{\boldsymbol{1 A}}{ }^{Z}$ that suffers the large statistical error of $\mathbf{A}_{\text {FB }} \sim 5 \%$

$$
\begin{gathered}
\Gamma_{\mu}^{t \bar{t} X}\left(k^{2}, q, \bar{q}\right)=i e\left\{\gamma_{\mu}\left(F_{1 V}^{X}\left(k^{2}\right)+\gamma_{5} F_{1 A}^{X}\left(k^{2}\right)\right)\right. \\
\left.\quad-\frac{\sigma_{\mu \nu}}{2 m_{t}}(q+\bar{q})^{v}\left(i F_{2 V}^{X}\left(k^{2}\right)+\gamma_{5} F_{2 A}^{X}\left(k^{2}\right)\right)\right\}
\end{gathered}
$$

CPV observables studies

The "baseline" study is limited to CP-conserving form factors, but $\mathbf{e}^{+} \mathbf{e}^{-}$is known to do well also for CP-violationg $\mathbf{F}_{2 A}$ at least since TESLA times

Reconstructing optimal CP observables from W. Bernreuther et. al. arXiv:hep-ph/9602273 that measure differences in top polarization orthogonal to production plane and also differences in top quark flight direction. In the lepton + jets final state:

$$
O_{+}^{R e}=\left(\hat{q}_{+}^{*} \times \hat{q}_{\bar{X}}\right) \cdot \hat{e}_{+}
$$

$$
O_{+}^{I m}=-\left[1+\left(\frac{\sqrt{s}}{2 m_{t}}-1\right)\left(\hat{q}_{\bar{X}} \cdot \hat{e}_{+}\right)^{2}\right] \hat{q}_{+}^{*} \cdot \hat{q}_{\bar{X}}+\frac{\sqrt{s}}{2 m_{t}} \hat{q}_{\bar{X}} \cdot \hat{e}_{+} \hat{q}_{+}^{*} \cdot \hat{e}_{+}
$$

These observables have simple relations to the four $F_{2 A}$ form factors

$$
\begin{gathered}
A_{\gamma, Z}^{R e}=\left\langle O_{+}^{R e}\right\rangle-\left\langle O_{-}^{R e}\right\rangle=c_{\gamma}\left[P R e\left(F_{2 A}^{\gamma}\right)+\operatorname{KZRe}\left(F_{2 A}^{Z}\right)\right] \\
A_{\gamma, Z}^{I m}=\left\langle O_{+}^{I m}\right\rangle-\left\langle O_{-}^{I m}\right\rangle=d_{\gamma}\left[\operatorname{Im}\left(F_{2 A}^{\gamma}\right)+\operatorname{PKZIm}\left(F_{2 A}^{Z}\right)\right]
\end{gathered}
$$

CPV observables preliminary results

No migrations observed for these observables -> No $\chi^{\mathbf{2}}$ cut needed
50-60\% efficiency retained (better statistics than for $A_{\text {FB }}$)

Left-handed electron	Mean value Reco	RMS	$\begin{aligned} & \text { סstat } \\ & \left(500 f b^{-1}\right) \end{aligned}$		Uncertainty	$\begin{gathered} \text { CLIC@380GeV } \\ 500 \mathrm{fb}^{-1} \end{gathered}$	$\begin{gathered} \text { ILC@500GeV } \\ 500 \mathrm{fb}^{-1} \end{gathered}$	TDR TESLA $300 \mathrm{fb}^{-1}$
ORe+	0,00134	0,47	0,001	Standard Error propagation	$\operatorname{Re}\left\{\mathrm{F}_{2 A} \mathrm{Y}\right\}$	0,004	0,004	0,007
ORe-	0,0014	0,47	0,001					
Olm+	-0,0295	0,52	0,001		$\mathrm{Re}\left\{\mathrm{F}_{2 A}{ }^{\text {² }}\right\}$	0,007	0,006	0,008
Olm-	-0,0285	0,52	0,001		$\operatorname{Im}\left\{\mathrm{F}_{2 A}{ }^{\gamma}\right\}$	0,004	0,006	0,008
ARe	-0,0001	-	0,001					
Alm	-0,0010	-	0,002		$\operatorname{Im}\left\{\mathrm{F}_{2}{ }^{\text { }}\right\}$	0,007	0,010	0,010

The potential of CLIC@380 GeV for measuring CPV couplings, assuming a $\mathrm{L}=500 \mathrm{fb}^{-1}$, is comparable to previous studies

Summary and conclusions

- LoosePandoraPFANewPFOs with VLC jet algorithm ($\mathrm{R}=1.6 \beta=\gamma=0.8$) offers the best jet reconstruction
- We have to cut very hard in the χ^{2} to cure the migration on $A_{F B}->$ we pay a high price in statistics (~18\%)
- It translates into a statistical error of $\sim 5 \%$ for $A_{F B}$ that increases the uncertainty in the top quark couplings \rightarrow An improvement of the quality cuts is needed or more statistics
- A great precision in the measurement of CPV couplings could be reached with e+e->tt CLIC@380GeV (L=500fb-1)
- It would interesting to extend the study to CLIC@500 GeV (cross check), CLIC@1.4TeV (boosted tops, minor migrations due to ambiguity Wb pairing)

Thank you for your attention

BACKUP SLIDES

Valencia Jet Algorithm

A new clustering jet reconstruction algorithm that combines the good features of lepton collider algorithms, in particular the Durham-like distance criterion;

$$
d_{i j}=\min \left(E_{i}^{2 \beta}, E_{j}^{2 \beta}\right)\left(1-\cos \theta_{i j}\right) / R^{2}
$$

with the robustness against background of the longitudinally
invariant $\mathbf{k}_{\mathbf{t}}$ algorithm

$$
d_{i B}=E^{2 \beta} \sin ^{2 \gamma} \theta_{i B}
$$

The γ parameter governs the evolution of the jet area with polar angle and β allows to change the clustering order.
*In the default settings the two exponents β and γ are equal. For $\boldsymbol{\beta}=\boldsymbol{\gamma}=\mathbf{1}$ the expression simplifies to $\boldsymbol{d} \boldsymbol{i} \boldsymbol{B}=\boldsymbol{E}^{\mathbf{2}} \boldsymbol{\operatorname { s i n }}^{\mathbf{2}} \theta_{\boldsymbol{i} \boldsymbol{B}}=\boldsymbol{p}_{\boldsymbol{2}}^{\boldsymbol{t}}$

The (β, γ) space

Jet reconstruction performance

- Events are selected in which the top pair decays semi-leptonically

Event generation

1) WHIZARD: event generation (samples for the DBD)
2) PYTHIA: Parton shower and hadronisation
3) FASTJET: Durham for primary jet reconstruction and Long. Inv. k_{t}
for $\gamma \gamma \rightarrow$ hadrons removal

Event selection

- The signal is reconstructed by choosing the combination of b quark jet and W boson that minimises the following equation:

$$
d^{2}=\left(\frac{m_{\text {cand. }}-m_{t}}{\sigma_{m_{t}}}\right)^{2}+\left(\frac{E_{\text {cand. }}-E_{\text {beam }}}{\sigma_{E_{\text {cand. }}}}\right)^{2}+\left(\frac{p_{b}^{*}-68}{\sigma_{p_{b}^{*}}}\right)^{2}+\left(\frac{\cos \theta_{b W}-0.23}{\sigma_{\cos \theta_{b W}}}\right)^{2}
$$

- Some cuts:
- Hadronic mass of the final state: $180<m_{\text {had. }}<420 \mathrm{GeV}$
- Reconstructed W mass: $50<m_{W}<250 \mathrm{GeV}$
- Reconstructed top mass: $120<m_{t}<270 \mathrm{GeV}$
- Isolated lepton: the best candidate
- b-tag values: $b-\operatorname{tag}_{1}>0.8 \& b-\operatorname{tag}_{2}>0.3$
- The entire selection retains:
- 51.9% for the configuration $P, P^{\prime}=-1,+1$ (Left-handed electrons)
- 55.0\% for P, $\mathrm{P}^{\prime}=+1$, -1 (Right-handed electrons)

lepton+jets tt ILC@500GeV

- This study, based on a detailed simulation of the ILD detector concept for ILC, assumes a $\sqrt{ } \mathrm{s}=500 \mathrm{GeV}$ and $\mathrm{L}=500 \mathrm{fb}^{-1}$ and polarised beams.
- The vector, axial and tensorial CP conserving couplings are extracted separately for the Z and γ component
- A way to describe the current of $t t Z^{0}$ and $t t \gamma$ primary vertices:

$$
\begin{aligned}
& \text { - } X=Z^{0}, Y \\
&- V=\text { Vector coupling } \\
&- A=\text { Axial coupling }
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma_{\mu}^{t \bar{t} X}\left(k^{2}, q, \bar{q}\right)=i e\left\{\gamma_{\mu}\left(F_{1 V}^{X}\left(k^{2}\right)+\gamma_{5} F_{1 A}^{X}\left(k^{2}\right)\right)\right. \\
& \left.\quad-\frac{\sigma_{\mu v}}{2 m_{t}}(q+\bar{q})^{v}\left(i F_{2 V}^{X}\left(k^{2}\right)+\gamma_{5} F_{2 A}^{X}\left(k^{2}\right)\right)\right\}
\end{aligned}
$$

[^0]
From ILC@500GeV to CLIC@380GeV

- ee $\rightarrow \mathbf{6}$ fermions samples (selecting only lepton+jets decays) from the Monte Carlo samples for top reconstruction studies (https://twiki.cern.ch/twiki/bin/ view/CLIC/MonteCarloSamplesForTopPhysics)
- ILCDirac software (Marlin, FastJet, Pandora...)
- Full simulation CLIC_ILD_CDR500 detector model
- Jet algorithms: Longitudinally invariant $\mathbf{k}_{\mathbf{t}}$ and Valencia jet algorithm
- Analysis chain and the code (adapted) from ILC@500GeV studies

[^0]: A precise characterisation of the top quark electro-weak vertices at the ILC arXiv:1505.06020

