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I.
Review: Gravity with anisotropic scaling



4

Gravity with anisotropic scaling
(also known as Hǒrava-Lifshitz gravity)

Field theory with anisotropic scaling (x = {xi, i = 1, . . . D}):

x→ λx, t→ λzt.

z: dynamical critical exponent – characteristic of RG fixed point.

Many interesting examples: z = 1, 2, . . ., n, . . .
fractions: 3/2 (KPZ surface growth in D = 1), . . ., 1/n, . . .
families with z varying continuously . . .

Condensed matter, dynamical critical phenomena, quantum
critical systems, . . .

Goal: Extend to gravity, with propagating gravitons, formulated
as a quantum field theory of the metric.
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Example: Lifshitz scalar [Lifshitz, 1941]

Gaussian fixed point with z = 2 anisotropic scaling:

S = SK − SV =
1

2

∫
dt dDx

{
Φ̇2 − (∆Φ)2

}
,

(∆ is the spatial Laplacian).

Compare with the Euclidean field theory

W = −1

2

∫
ddx (∂φ)2.

Shift in the (lower) critical dimension:

[φ] =
d− 2

2
, [Φ] =

D − 2

2
.



6

Gravity at a Lifshitz point
Spacetime structure: Preferred foliation by leaves of constant
time (avoids the “problem of time”).

Fields: Start with the spacetime metric in ADM decomposition:
the spatial metric gij, the lapse function N , the shift vector Ni.

Symmetries: foliation-preserving diffeomorphisms, Diff(M,F).

Action: S = SK − SV , with

SK =
1

κ2

∫
dt dDx

√
gN

(
KijK

ij − λK2
)

where Kij =
1

N
(ġij −∇iNj −∇jNi) the extrinsic curvature,

and SV =
1

κ2
V

∫
dt dDx

√
gN V(Rijk`,∇i).
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Projectable and nonprojectable theory
N , Ni are the gauge fields for the Diff(M,F) symmetries
generated by δt = f(t), δxi = ξi(t,x). Hence:

(1) we can restrict N(t) to be a function of time only:
projectable theory.

(2) or, we allow N(t,x) to be a spacetime field. New terms,
containing ∇iN/N , are then allowed in S by symmetries:
nonprojectable theory.

Spectrum: Tensor graviton polarizations, plus an extra scalar
graviton. Three options for the scalar: Live with it, gap it, or eliminate it

by an extended gauge symmetry.

Dispersion relation: Nonrelativistic, ω2 ∼ k2z, around this
Gaussian fixed point.

Allowed range of λ: 0 11/D

λ
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Special case: Detailed balance

Sometimes, the potential term happens to be the square of
EoM for some local action W in D dimensions:
This gives theories in detailed balance.
(Terminology borrowed from non-equilibrium stat-mech.)

Example: Lifshitz scalar satisfies the detailed balance condition,

(∆Φ)2 =

(
δW

δΦ

)2

, with W = −1

2

∫
dDx (∂Φ)2.

Simplest examples involving (projectable) gravity:

D = 2 : W =
∫ √

gR → V = 0,

D = 3 : W =
∫
ω3(Γ) → V = CijC

ij.
(here ω3(Γ) = Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ, and Cij is the Cotton tensor.)
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RG flows

Assume z > 1 UV fixed point. Relevant deformations trigger
RG flow to lower values of z. Example: Lifshitz scalar.

S =
1

2

∫
dt dDx

{
Φ̇2 − (∆Φ)2−µ2∂iΦ∂iΦ−m4Φ2

}
,

Multicriticality. New phases: modulated.

Similarly for gravity:

S =
1

κ2

∫
dt dDx

√
gN

{
KijK

ij − λK2 − . . .−µ2z−2R−M2z
}
.

Flows in IR to z = 1 scaling. In the IR regime, SV is
dominated by the spatial part of Einstein-Hilbert.
(The z > 1 Gaussian gravity fixed points also emerge in IR in condensed

matter lattice models, [Cenke Xu & PH].)
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Relevant deformations, RG flows, phases
The Lifshitz scalar can be deformed by relevant terms:

S =
1

2

∫
dt dDx

{
φ̇2 − (∆φ)

2−µ2∂iφ∂iφ+m4φ2 − φ4
}

The undeformed z = 2 theory describes a tricritical point,
connecting three phases – disordered, ordered, spatially
modulated (“striped”) [A. Michelson, 1976]:
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Phase structure in the CDT approach

Compare the phase diagram in the causal dynamical
triangulations:
[Ambjørn et al, 1002.3298]

C

B

A

Note: z = 2 is sufficient to explain three phases.
Possibility of a nontrivial z ≈ 2 fixed point in 3 + 1 dimensions?
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RG flows in gravity: z = 1 in IR

Theories with z > 1 represent candidates for the UV description.
Under relevant deformations, the theory will flow in the IR.
Relevant terms in the potential:

∆SV =

∫
dt dDx

√
gN

{
. . .+µ2(R− 2Λ)

}
.

the dispersion relation changes in IR to ω2 ∼ k2 + . . .
the IR speed of light is given by a combination of the couplings
µ2 combines with κ, . . . to give an effective GN .

Sign of k2 in dispersion relation is opposite for the scalar and
the tensor modes! Can we classify the phases of gravity? Can
gravity be in a modulated phase?
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Spatially homogeneous isotropic phases
of gravity

vglue-.5in Examples of phases of gravity with k = 1: a de
Sitter-like phase, an oscillating cosmology (=“temporally
modulated” phase); the Einstein static universe appears at the
phase transition line, where the theory satisfies detailed balance.

Cosmology: [Kiritsis et al, Brandenberger et al, Lüst et al, many others]
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Modulated phases of gravity
[w/ Kevin Grosvenor and Charles Melby-Thompson]

First, classify all spatially homogeneous and isotropic phases.
Take gij = a2(t)γij(k), with k = 0,±1; set Ni = 0. The phase
diagram for k = 1 (at fixed R2 terms):

forbidden zone

oscillating
(oscillating

hyperbolic)

de Sitter−like

Governed by
∫
H⊥ ≡ (ġ)2 +R2 + µ2R− 2Λ = 0, the

Friedmann equation.

cf.: CDT phase structure in 2 + 1 dimensions [arXiv:1111.6634,

w/ C. Anderson, S. Carlip, J.H. Cooperman, R. Kommu and P. Zulkowski.]

Deconfinement of
∫
H⊥?
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Anisotropic Weyl symmetries

Using a spacetime-dependent scaling factor Ω(t,x) = eω(t,x),
define

gij → Ω2gij, Ni → Ω2Ni, N → ΩzN.

Such anisotropic Weyl transformations are compatible with
foliation-preserving diffeos:

Weylz(M,F) ⊂×Diff(M,F).

Indeed, [δω, δf,ξi] = δfω̇+ξi∂iω
.

This provides the appropriate generalization of local “conformal
transformations” to foliated spacetimes with anisotropic scaling.

Often, it is sufficient to have the preferred foliation and the anisotropic Weyl

transformations defined only asymptotically, “near infinity.”
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Anisotropic Weyl anomalies

Consider an “anisotropic CFT” in D + 1 dimensions, with
dynamical exponent z.

Place it in a gravitational background. The theory may exhibit
anisotropic Weyl anomaly:

δωWeff =

∫
dt dDx

√
gN ω(t,x)A(t,x).

What terms can appear in A? Question in BRST cohomology
of Weylz(M,F).

Answer for D = 2, z = 2: Assuming time reversal invariance,
two independent anomaly terms (hence two “central charges”)

A = cK

(
KijK

ij − 1

2
K2

)
+ cV

[
R−

(
∇N
N

)2

+
∆N

N

]2

.
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Conformal gravity at a Lifshitz point
For some fixed z, extend the gauge symmetry from Diff(M,F)
to Weylz(M,F) ⊂×Diff(M,F).

Then:

• The kinetic term SK will be invariant if z = D and λ = 1/D.

• The theory is automatically nonprojectable.

• The classical theory may be invariant, but the quantum theory
generally expected to develop a Weyl anomaly.

• Choice: Theory may or may not satisfy detailed balance.

Example: Conformal z = 2 gravity in D = 2 with detailed
balance,

S = SK =
1

κ2

∫
dt d2x

√
gN

(
KijK

ij − 1

2
K2

)
.
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II.
Lifshitz holography
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Lifshitz holography
AdS:

ds2 = r2(−dt2 + dx2) + dr2/r2
r

Lifshitz:

ds2 = −r2zdt2 + r2dx2 + dr2/r2
r

Focus of this talk:
The role of HL gravity for Lifshitz spacetime.
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Which theory does this space solve?

Not Einstein equations in the vacuum . . .

Two options:

(a) Keep theory relativistic, modify by inventing suitable matter;
Lifshitz spacetime may be a solution when matter is excited.

(b) Modify gravity; Lifshitz spacetime may be a vacuum solution.

We will see that in both cases, ideas of anisotropic gravity play
a central role.
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IIa.
Lifshitz holography in relativistic gravity
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Relativistic holography for Lifshitz space

Various matter sources possible, one of the simplest/most
popular is a massive vector: [Taylor]

S =
1

16πGN

∫
dt dDx dr

√
−G(R−2Λ)+

1

8πGN

∫
dt dDx

√
−gK

− 1

4

∫
dt dDx dr

√
−G(FµνF

µν + 2m2AµA
µ).

To get Lifshitz with given z as solution, one must take

Λ =
1

2

[
z2 + (D − 1)z +D2

]
, m2 = Dz, 〈At〉 =

2(z − 1)

z
.

Also, various string/M-theory embeddings now exist.

[Balasubramanian,Narayan; Gauntlett et al; . . . ]
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Anisotropic conformal infinity
Even if we embed Lifshitz space into relativistic gravity with
matter, we need anisotropic scaling to define properly the
asymptotic structure near “infinity”.

Conformal infinity [Penrose]: Rescale the bulk metric on M

gµν → g̃µν ≡ Ω(t,x, r)gµν,

so that g̃µν now extends “past infinity” of M. Then take M.
For Lifshitz spacetimes with z > 1: Conformal infinity is a line!
(This contradicts holographic expectations).

Anisotropic conformal infinity [PH & C. Melby-Thompson, 2009]:
For asymptotically foliated spacetimes, use anisotropic Weyl
transformations instead. Anisotropic conformal infinity of
Lifshitz spacetime is of codimension one, with a preferred
nonrelativistic foliation. (As expected from holography.)
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Holographic renormalization
Holographic correspondence:

Zbulk [Φ|∂M = Φ0] =

〈
exp

(∫
∂M

Φ0O
)〉

CFT

.

In the classical gravity limit, this implies

Weff[Φ0] = −Son−shell[Φ0]gravity.

The action diverges, requires (holographic) regularization and
renormalization:

r

8
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Holographic renormalization
Holographic correspondence:

Zbulk [Φ|∂M = Φ0] =

〈
exp

(∫
∂M

Φ0O
)〉

CFT

.

In the classical gravity limit, this implies

Weff[Φ0] = −Son−shell[Φ0]gravity.

The action diverges, requires (holographic) regularization and
renormalization:

r

1/ε
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Counterterms: Hamilton-Jacobi theory
[de Boer, Verlinde, Verlinde; Skenderis et al; Ross & Saremi; . . .]

On-shell action S[gij, Ni, N ; . . .], as a functional of boundary
fields, satisfies HJ equation in radial evolution.

In gravity, this means Hr
(
παβ =

δS

δgαβ

)
= 0

(plus supermomentum constraints).

Parametrize S[gij, Ni, N ] =
1

16πGN

∫
dt dDx

√
gN L.

Note: L is divergent, expand asymptotically as

L = . . .+
L(4)

ε4
+
L(2)

ε2
+ L̃(0)log ε+ L(0) +O(ε2).

Plug into HJ equation, which gives a recursive relation among
counterterms.
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Counterterms for z = 2 in D = 2:
Conformal Lifshitz gravity

Holographic recursion relations for counterterms can be solved
for general D and z, at least in principle.

In the first nontrivial conformal case, D = 2 and z = 2, they
give:

L(4) = 6, L(2) =
1

2
R+

1

4

(
∇N
N

)2

, L̃(0) = KijK
ij − 1

2
K2.

The recursion relations imply δDL(0) ∼ L̃(0).
Since L(0) is the renormalized action, and δD (=the radial
evolution operator) is the anisotropic Weyl rescaling,
L̃(0) gives the anisotropic Weyl anomaly.
This anomaly takes the form of z = 2 conformal Lifshitz gravity
action in detailed balance, at the anisotropic boundary.



28

Holographic anomaly in detailed balance
Note that of the two possible central charges, only cK is
generated in this holographic theory.
What distinguishes cK from cV ? The cK anomaly satisfies the
detailed balance condition.

This was further verified for bulk gravity coupled to scalars XI.
In addition to the kinetic piece,

1

κ2

∫
dt d2x

√
gN

(
KijK

ij − 1

2
K2

)
+

1

2

∫
dt d2x

√
g

N

(
ẊI −N i∂iX

I
)2

,

the anomaly now develops also a potential part,∫
dt d2x

√
gN

{
(∆XI)2 +

κ2

2
Tij(X)T ij(X)

}
.

This is in detailed balance, with W = 1
2

∫
d2x
√
g∂iX

I∂iXI.
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Field-theory examples with z = 2, D = 2

Lifshitz scalar field in gravitational background:

S =
1

2

∫
dt d2x

√
g

{
1

N

(
Φ̇−N i∇iΦ

)2

−N(∆Φ)2

}
.

Classically anisotropically Weyl invariant with z = 2, δΦ = 0.

Quantum Weyl anomaly: [de Boer et al., also us]

Calculated using ζ-function regularization,

cK =
1

32π
, cV = 0.

Only one non-zero central charge; anomalies in detailed balance!
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Detailed balance from holographic
recursion

Why in the world should the holographic Weyl anomaly satisfy
detailed balance?

Answer: This follows from the holographic recursion relation
among the counterterms!

Indeed, the HJ equation – expanded order by order in the
conformal dimension – implies that

L̃(0) ∼
(
δL(2)

δgαβ

)2

.

This is precisely the condition of detailed balance, with the
quadratic counterterm L(2) playing the role of W !
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More QFT examples with z = 2, D = 2

We saw that the minimal Lifshitz scalar has one central charge
cK 6= 0 but the other one cV = 0.

Are there theories with both independent central charges?
(if not, then we don’t need to look for their holographic description . . .)

Yes!

S =
1

2

∫
dt d2x

√
g

{
1

N

(
Φ̇−N i∇iΦ

)2

−N(∆Φ)2

}
− e

2

2

∫
dt d2x

√
gN

[
R−

(
∇N
N

)2

+
∆N

N

]2

Φ2.

This non-minimally coupled theory has cK = 1/(32π) and
cV = −e2/(8π).

Now that we know that theories with independent cK, cV exist,
what is the holographic dual of cV ?
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Holography with the general anomaly?

•The simplest relativistic system does not work.

• If looking for a more complicated relativistic model:
Need to relax the holographic recursion between counterterms,

L̃(0) 6=
(
δL(2)

δgαβ

)2

.

• But: it turns out that Lifshitz gravity works, in the vacuum!

Disclaimer: That does not imply that one cannot do this with relativistic

gravity coupled to matter; indeed, the boundary between relativistic and

nonrelativistic is somewhat fuzzy.)
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IIb.
Lifshitz holography with Lifshitz gravity
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Lifshitz gravity for Lifshitz holography

Requires nonprojectable theory (because we anticipate
anisotropic Weyl transformations on the codimension-one
boundary, hence N near boundary must depend on spacetime).

Lifshitz spacetime now foliated not just asymptotically, but
everywhere (in the bulk). A single, codimension-one foliation by leaves

of constant t (multiple & nested foliations also possible, not studied here).

At low energies, just as in GR:

• Anisotropic gravity will be dominated by z = 1 terms.

• We neglect the small corrections due to all other
higher-derivative terms, including the z > 1 terms in SV .
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Low-energy effective theory

The low-energy action will be similar to Einstein-Hilbert, with
several important differences:

S =
1

κ2

∫
dt dDx dr

√
GN

(
KabK

ab − λK2
)

+
1

κ2

∫
dt dDx dr

√
GN

[
β(R−2Λ)− α

2

2

(
∇aN
N

)2 ]
.

We have three additional low-energy couplings compared to GR:
λ, β and α.

Roughly, one will be fixed by choosing z for the vacuum, the
other is free to give the missing central charge in the anomaly.
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Lifshitz as the vacuum solution
Require now that the Lifshitz spacetime with chosen value of z
is a solution of the vacuum EoM.

This determines the cosmological constant
(essentially, by our choice of scale),

Λ = −(D + z)(D + z − 1)

2
,

and fixes one of the two new couplings,

α2 =
2β(z − 1)

z
,

leaving λ undetermined.

Note: This relation implies α2 ≤ 2βD/(D − 1), a relation
known in nonprojectable HL gravity.
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Scalar gravitons & anisotropic BF bound
Although no extra matter field introduced, the scalar graviton
plays the role of an extra propagating DoF.

One can ask for the scaling dimensions ∆+ and ∆− associated
with the asymptotic behavior of the bulk scalar graviton:

∆± =
z +D

2

1±

√
1 +

4(1− z)D
(1− λ)(z +D)2

 .

The requirement that ∆± be real gives constraints on λ; for
z > 1,

λ ≥ 1 or λ ≤ λU ≡
(z −D)2 + 4D

(z +D)2
.

In the special case of z = D, the latter gives λ ≤ 1/D,

and opens up a BF-like window:
1

D + 1
≤ λ ≤ 1

D
.
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Holographic recursion in HL gravity:
The counterterms and the anomaly

Again, use the radial Hamilton-Jacobi formulation to perform
holographic renormalization. Logic is identical to the relativistic
case.

In the special case of D = 2, z = 2, we found the general form
of the anisotropic Weyl anomaly:

1

2κ2

(
KijK

ij − 1

2
K2

)
+

β

48κ2

[
R−

(
∇N
N

)2

+
∆N

N

]2

.

Thus, both cK and cV are independently produced in
holographic renormalization of minimal HL gravity in the
vacuum.
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III.
Black holes & Conclusions
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Black holes and holography at T 6= 0

Having shown that HL gravity represents the minimal model of
holography for QFTs with Lifshitz scaling, one can try to
thermalize the duality.

Saddle points at finite T : Black holes in HL gravity? Horizons?
Temperature? Entropy? Two classes of solutions found:

(1) Simple Lifshitz-Schwarzschild-Painlevé black holes

N = rz, ds2
Σ =

dr2

r2
+ r2dx2, Nr =

C

r(D−z)/2+1
.

These exist only when λ = λU , and have M ∝ C2(D + 2− z)!

(2) Static solutions: Lifshitz-Schwarzschild asymptotics, but the
exact solution is analytically much more complicated.

This is an interesting Gedanken laboratory, in both directions!
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Conclusions
• Gravity with anisotropic scaling is finding multiple use in holography for

nonrelativistic QFTs.

• Even when the bulk theory is relativistic, anisotropic Weyl symmmetry is

crucial for the proper definition of conformal infinity of spacetime, and in the

treatment of asymptotic expansions for holographic renormalization.

• Anisotropic Weyl symmetries can be anomalous. For z = 2 in D = 2,

there are two independent central charges. Both can be independently

realized in families of consistent QFTs.

• The minimal relativistic model of Lifshitz holography does not yield the

most general form of anisotropic Weyl anomaly: Only one of the central

charges is nonzero.

• Lifshitz spacetimes also solve vacuum EoM of nonprojectable HL gravity.

This construction yields the most general form of the holographic anisotropic

Weyl anomaly.

• HL gravity is the natural arena for nonrelativistic holography.


