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Example: Lifshitz scalar field theory
Many interesting features can be illustrated by:

S =
1

2

∫
dt dDx

{
φ̇2 − (∆φ)

2
}

A theory closely related to the better-known

W =
1

2

∫
dDx ∂iφ∂iφ

The critical dimension has shifted:

[φ] =
D − 2

2
;

φ is dimensionless in 2 + 1 dimensions.

[Lifshitz,1941]
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Gravity at a Lifshitz point

Minimal starting point: fields gij(t,x) (the spatial metric),
action S = SK − SV , with the kinetic term

SK =
1

κ2

∫
dt dDx

√
g ġijG

ijk`ġk`

where Gijk` = gikgj` − λgijgk` is the De Witt metric, and the
“potential term”

SV =
1

4κ2

∫
dt dDx

√
g V (Rijk`)

containing all terms of the appropriate dimension.
Special case, theory in “detailed balance”: V = (δW/δgij)

2.



6

Extending the symmetries

A good starting point, but this action is only invariant under
time-independent spatial diffeomorphisms, x̃i = x̃i(xj), and
describes dynamical propagating components gij of the spatial
metric.

Covariantization of the theory:

(1) Introduce ADM-like variables N (lapse) and Ni (shift),
known from the space-time decomposition of the spacetime
metric;

(2) Replace ġij → Kij = 1
N (ġij −∇iNj −∇jNi),

√
g → N

√
g.
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Gauge symmetries: Foliation-preserving diffeomorphisms
DiffF(M),

δt = f(t), δxi = ξi(t, xj).

The transformation rules follow from a nonrelativistic
contraction of spacetime diffeomorphisms; N and Ni are gauge
fields of DiffF(M):

δN = ḟ(t)N + . . . , δNi = ξ̇j + . . .

In the minimal (=“projectable”) realization, N is a function of
only t.

Symmetries reminiscent of the Causal Dynamical Triangulations
(CDT) approach to quantum gravity on the lattice.



8

Simplest example: z = 2 gravity

The action is S = SK − SV , with

Sk =
1

κ2

∫
dt dDx

√
gN

(
KijK

ij − λK2
)

and

SV =

∫
dt dDx

√
gN

(
αRijR

ij + βR2 + . . .
)
.

Shift in the critical dimension, as in the Lifshitz scalar:

[κ2] = 2−D.

The minimal theory with N(t) has the usual number of
transverse-traceless graviton polarizations, plus an extra scalar
DoF, all with the dispersion relation ω2 ∼ k4.

Two special values of λ: 1 and 1/D.
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Another example: z = 3 gravity

The action is again S = SK − SV , with

SK =
1

κ2

∫
dt dDx

√
gN

(
KijK

ij − λK2
)

and

SV =

∫
dt dDx

√
gN CijC

ij.

where Cij = εik`∇k(Rj
` −

1
4Rδ

j
`) is the Cotton-York-ADM

tensor. The shift of the critical dimension is

[κ2] = 3−D.

Anisotropic Weyl invariance eliminates the scalar graviton
classically.
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Emergent gravity at a Lifshitz point

[Cenke Xu and P.H., arXiv:1003.0009]

These models with z = 2 or z = 3 gravitons can emerge as IR
fixed points on the fcc lattice. Emergent gauge invariance
stabilizes new algebraic bose liquid phases.

Recall the emergence of U(1) “photons” in dimer models
[Fradkin,Kivelson,Rokhsar,...]:

Lattice symmetries protect z = 2 or z = 3 in IR, forbid GN .
But: interacting Abelian gravity is possible!
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Gravity on the lattice

Causal dynamical triangulations approach [Ambjørn,Jurkiewicz,Loll]

to 3 + 1 lattice gravity:

Naive sum over triangulations does not work (branched
polymers, crumpled phases).

Modify the rules, include a preferred causal structure:

With this relevant change of the rules, a continuum limit
appears to exist: The spectral dimension ds ≈ 4 in IR, and
ds ≈ 2 in UV. Continuum gravity with anisotropic scaling:
ds = 1 +D/z. ([Benedetti,Henson,2009]: works in 2 + 1 as well.)



12

Relevant deformations, RG flows, phases
The Lifshitz scalar can be deformed by relevant terms:

S =
1

2

∫
dt dDx

{
φ̇2 − (∆φ)

2−µ2∂iφ∂iφ+m4φ2 − φ4
}

The undeformed z = 2 theory describes a tricritical point,
connecting three phases – disordered, ordered, spatially
modulated (“striped”) [A. Michelson, 1976]:
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Phase structure in the CDT approach

Compare the phase diagram in the causal dynamical
triangulations:
[Ambjørn et al, 1002.3298]

C

B

A

Note: z = 2 is sufficient to explain three phases.
Possibility of a nontrivial z ≈ 2 fixed point in 3 + 1 dimensions?
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RG flows in gravity: z = 1 in IR

Theories with z > 1 represent candidates for the UV description.
Under relevant deformations, the theory will flow in the IR.
Relevant terms in the potential:

∆SV =

∫
dt dDx

√
gN

{
. . .+µ2(R− 2Λ)

}
.

the dispersion relation changes in IR to ω2 ∼ k2 + . . .
the IR speed of light is given by a combination of the couplings
µ2 combines with κ, . . . to give an effective GN .

Sign of k2 in dispersion relation is opposite for the scalar and
the tensor modes! Can we classify the phases of gravity? Can
gravity be in a modulated phase?
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My final two lectures are based on:

T. Griffin, K.T. Grosvenor, P.H. and Z. Yan,
Multicritical Symmetry Breaking and Naturalness of Slow
Nambu-Goldstone Bosons,
arXiv:1308.5967, Phys. Rev. D88 (2013) 101701;

T. Griffin, K.T. Grosvenor, P.H. and Z. Yan,
Scalar Field Theories with Polynomial Shift Symmetries,
arXiv:1412.1046, Commun. Math. Phys. 340 (2015) 1720;

T. Griffin, K.T. Grosvenor, P.H. and Z. Yan,
Cascading Multicriticality in Nonrelativistic Spontaneous
Symmetry Breaking,
arXiv:1507.06992, Phys. Rev. Lett. 115 (2015) 241601;

T. Griffin, K.T. Grosvenor, P.H., C. Mogni and Z. Yan,
in progress.
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Puzzles of Naturalness
Some of the most fascinating open problems in modern physics
are all problems of naturalness:

• The cosmological constant problem

• The Higgs mass hierarchy problem

• The linear resistivity of strange metals, the regime above Tc
in high-Tc superconductors [Bednorz&Müller ’86; Polchinski ’92]

In addition, the first two •s – together with the recent
experimental facts – suggest that we may live in a strangely
simple Universe . . .

Naturalness is again in the forefront
(as are its possible alternatives: landscape? . . .?)
If we are to save naturalness, we need new surprises!
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What is Naturalness?
Technical Naturalness: ’t Hooft (1979)

“The concept of causality requires that macroscopic
phenomena follow from microscopic equations.”

“The following dogma should be followed: At any energy
scale µ, a physical parameter or a set of physical parameters
αi(µ) is allowed to be very small only if the replacement
αi(µ) = 0 would increase the symmetry of the system.”

Example: Massive λφ4 in 3 + 1 dimensions.

λ ∼ ε, m2 ∼ µ2ε, µ ∼ m/
√
λ.

Symmetry: The constant shift φ→ φ+ a.

“Pursuing naturalness beyond 1000 GeV will require theories
that are immensely complex compared with some of the grand
unified schemes.”
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Gravity without Relativity
(a.k.a. gravity with anisotropic scaling, or Hǒrava-Lifshitz gravity)

Gravity on spacetimes with a preferred time foliation (cf. FRW!)

Opens up the possibility of new RG fixed points, with improved
UV behavior due to anisotropic scaling.

Field theories with anisotropic scaling:

xi → λxi, t→ λzt.

z: dynamical critical exponent – characteristic of RG fixed point.
Many interesting examples in condensed matter, dynamical
critical phenomena, quantum critical systems, . . ., with
z = 1, 2, . . . , n, . . ., or fractions (z = 3/2 for KPZ surface growth

in D = 1), . . ., continous families . . .

. . . and now gravity as well, with propagating gravitons,
formulated as a quantum field theory of the metric.
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Lifshitz spacetime

Just to be clear about terminology:

“Lifshitz” used for many different things in physics, historically
and even more so now.

By the Lifshitz spacetime we will mean RD+1 with the flat
metric gij = δij, N = 1, Ni = 0.

By Lifshitz symmetry we will mean the isometries of the Lifshitz
spacetime: Spatial rotations plus spacetime translations,

xi → Λi
jx

j + bi, t→ t+ b.

If a QFT with Lifshitz symmetries is at an RG fixed point, it
develops an extra symmetry, anisotropic conformal symmetry:

xi → λxi, t→ λzt.
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Spontaneous Symmetry Breaking

Global internal symmetry breaking leads to Nambu-Goldstone
modes. Phenomenon is remarkably universal, across many fields
dealing with many-body systems.

But how many NG modes, and what is their low-energy
dispersion relation?

• Relativistic case: All questions answered by Goldstone’s
theorem: One NG per broken generator, gapless=massless,
z = 1 dispersion ω = k.

• Nonrelativistic case: Classify NG modes by classifying their
low-energy effective QFTs [Murayama&Watanabe, ’12,’13].

Let’s focus for definiteness on systems with Lifshitz symmetries.
Write down possible EFT’s for NG modes πI.
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Nonrelativistic Goldstone Theorem?

Assume Lifshitz symmetry. Then [Murayama&Watanabe]:
the EFTs are

S =

∫
dt dDx

(
ΩI(π)π̇I + gIJ π̇

Iπ̇I − hIJ∂iπI∂iπ
J + . . .

)
.

Hence, this yields two types of NG modes:

• Type A, z = 1 dispersion ω = ck (those unpaired by Ω, with
no T-reversal breaking). As in the relativistic case, one Type A
NG mode per one broken generator.

• Type B, dispersion ω ∼ k2. Each associated with a pair of
broken symmetry generators, as paired by Ω. Minimal
T-reversal symmetry is broken.

Anything else would be fine tuning . . . or would it?


