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• RG flow provides a topology on the space 
of quantum field theories	

• Is RG flow always between isolated fixed 
points?	

• Are fixed points CFTs?	

• Is more exotic behaviour such as limit 
cycles possible?	

• Is RG flow gradient flow?	

• Is Unitarity crucial for these properties?

Since Wilson we know that QFTs should be considered	
as belonging to a space of QFTs with differing couplings



UV

UV, IR	
fixed	
points

UV fixed	
point, IR	

limit cycle

UV fixed	
point, IR	
chaos

Most of of our understanding of RG flow is	
based on fixed points, but limit cycles can	

exist in non unitary theories

Possible RG flows for two couplings



Zamolodchikov c-theorem in 2 dimensions	
provides strong constraints on RG flow

Based just on em tensor conservation and unitarity
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Crucial properties

C̃ = Virasoro central charge at fixed points

Zamolodchikov metric
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Basic eqs  for a-theorem

� d

dt
gI = �I(g) increases to the IRt

Fixed point �I(g⇤) = 0

a-theorem (minimal) aUV � aIR > 0

a-theorem (strong)

gradient flow

GIJ is a positive metric on couplings

T(IJ) = GIJ gradient flow requires integrability	
conditions on beta functions

   is stationary	
at a fixed point
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ã(g)
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Cardy proposal in 4 dimensions

For a CFT on curved space

�µ⌫hTµ⌫i = c Weyl tensor
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Free theories

On flat space for a CFT

In simple versions of AdS/CFT a = c

hTµ⌫ T�⇢i / c c > 0
hTµ⌫ T�⇢ T↵�i / A c + B a + C

c = 12nV + nS + 3nF

a = 1
3

�
62nV + nS + 11

2 nF

�

For conformally flat spaces, e.g. a sphere, the Weyl	
tensor vanishes



Is                       ? a > 0

First proper argument given by 
Hofman and Maldacena in 2008

Look at energy flux at infinity
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Requiring positivity in all directions  
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scalars, vectors give the extreme values of a/c
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Derivation of 4 dim RG eqs

Couplings

Consider Weyl rescalings �µ⌫ ! e2��µ⌫
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Defines GIJ , wI as well as c, a

There are crucial integrability conditions by 	
commuting Weyl rescalings for different   �

If            then the equation is equivalent to

�µ⌫hTµ⌫i = �IhOIi + c Weyl tensor
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In two dimensions there are very similar eqs

Consistency @Ic = GIJ�J � L�wI

L�wI = �J@JwI + @I�
J wJ

This is equivalent to Zamolodchikov’s eqs
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Let

ã = a + wI�
I

@I ã = TIJ�J TIJ = GIJ + @IwJ � @JwI

�I@I ã = GIJ�I�J

Then

ã = a at fixed points

Ambiguities

GIJ ⇠ GIJ + L�DIJ wI ⇠ wI + DIJ�J

ã ⇠ ã + DIJ�I�J



For irreversible RG flow require   
positive        GIJ

In two dimensions
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From this it follows that

GIJ ⇠ (x2)2hOI(x)OJ(0)i > 0

equivalent to Zamolodchikov metric



In four dimensions at a fixed point

Away from a fixed point        and        	
differ 
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In four dimensions for general renormalisable 
field theories	

with gauge couplings       Yukawa couplings       
quartic scalar couplings 

g Y

�

using perturbation theory

1 loop 2 loops 3 loops

Integrability gives constraints on beta functions
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Possible proof of a-theorem in 4 dimensions

Komargodski & Schwimmer 2011,	
Luty, Polchinski & Rattazzi  2012

Based on constructing effective Lagrangians 	
for the dilaton. This couples to the trace of 	
the energy momentum tensor. In a CFT if 	
conformal symmetry is spontaneously broken	
then the dilaton is a physical Goldstone boson.	

The construction assumes a lot of folklore	
about effective Lagrangians and the role of	
anomalies.



The pole determines a non zero amplitude	
in a CFT for a massless dilaton	
!

By assumption the CFT is invariant under 	
Weyl rescaling of the metric and a shift of the	
dilaton field

W [e2��µ⌫ , ⌧ + �] = W [�µ⌫ , ⌧ ]
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This can be used to construct a low	
energy effective action for ⌧

If there are couplings     to operators with	
dimension          then  

g
� g ! e(4��)⌧g



The trace anomaly generates contributions	
involving        on flat space⌧

A effective kinetic term is may be constructed	
from R̃

r2⌧ = @µ⌧@µ⌧
On shell                                               

This determines the leading low energy 
contribution to the dilaton scattering amplitude
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less important or vanish	
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At a fixed point the dilaton is formal and	
need not represent additional degrees of	
freedom,  a physical dilaton represents SSB	
for scale invariance	
Away from a fixed point such dilatons become 	
massive 

Crucial step in KS and LPR is in the effective	
dilaton action to take a ! aUV � aIR

Two arguments:   	
Anomaly matching of UV and IR fixed points,	
Removes the singular high energy behaviour of	
the dilaton theory

Assume              is defined along RG flow	
from  UV to IR

L
dilaton



Positivity of                 follows by assuming	
an unsubtracted dispersion relation for	
the forward dilaton-dilaton scattering 	
amplitude

aUV � aIR

Positivity obtains from positivity of	
the absorptive part of dilaton-dilaton	
forward scattering (unitarity)

A(s, 0) = A(�s, 0)

A(s, 0) ⇠ (aUV � aIR)
4
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Perturbatively we expect

�(s) ⇠ 1

f4
�(g(s))2 s

�(s) ⇠ 1

f4
GIJ�

I(g(s))�J(g(s)) sor

but this is not straightforward to show	
the analysis is significantly more intricate	
than in two dimensions

It is not clear how to to carry through	
perturbative calculations beyond lowest	
order



Generalisations to higher dimensions	
!

Weyl anomalies are present in any even	
dimension	
In six dimensions there are three terms	
constructed from the Weyl tensor, as well	
as the six dimensional Euler density with	
coefficient 	
No good argument for	
The KS argument requires analysis of	
3 to 3 dilaton scattering and positivity	
of                   is problematic	
Perturbatively the metric is negative in      ,	
but this is rather unphysical 

a

a > 0

aUV � aIR
�3



AdS/CFT	
!

This provides an alternative route to an	
a-theorem if a CFT has an AdS dual	
Identify the radial direction away from 	
the boundary with the RG scale	
Construct a scalar from the metric which	
is monotonic under radial evolution subject	
to a positivity condition on the bulk 	
energy momentum tensor	
This works in any dimension 



In odd dimensions an analogue of	
can be found by considering contributions	
to the partition function on a sphere	
There is an analogue of a weak version	
of the     theorem, but no strong version	
in which       is stationary at a fixed point

The theorem is doubtless true for unitary	
theories, at least in even dimensions, but 	
the derivation, and the necessary 	
assumptions, is still rather murky
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a
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In general beta functions are not unique

@�̄ Z @�! @�̄0 @�0

if
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is the anomalous dimension matrix for � �

Conventionally           is hermitian but this	
is not essential	
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Fortin et al showed that at three loops	
there were solutions of

�I = (Sg)I

which appeared to generate limit cycles	
but

BI = �I � (Sg)I = 0

gives                    and hence CFT   Tµµ = 0

but the anomalous dimension matrix	
is then non hermitian and might have 	
non real eigenvalues



a/c Theorem 
Old and New Results 

Hugh Osborn	
!

April 22nd  2015

1987-1992 2012-2014

at


