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Realistic quantum field theories are difficult to get to grips with outside perturbation theory
except in some cases using lattice methods and intensive computer simulations.

The fundamental insight of Wilson was that QFT’s have a scale u, related to the cut off,
and the QFT ‘flows’ in the space of theories, with given symmetries and field content, as u
is varied.

The flow has fixed points which are often ‘universal’ independent of the particular starting
theory.

The goal in a non perturbative understanding of QFT is to determine possible fixed points
and the qualitative structure of the RG flows between them.




In perturbation theory flow equations for the couplings are typically

ud%. '=B(g)
where
t=Inp— oc isan UV fixed point t - —oo is an IR fixed point
IR fixed points control low energy physics.
Massive fields decouple, only massless fields remain.
At an IR fixed point scale invariance = conformal invariance (usually)

Conformal field theories are relevant to the fixed points of RG flow: minimal data are the
scaling dimensions, spins and other quantum numbers of the operators.

Conventional wisdom < 1994 non free conformal field theories in four dimensions are rare.

After 1994 conformal field theories in four dimensions appear to be very common. Their
presence depends on non trivial interactions between gauge fields and fermions and chiral
symmetries play a crucial role. Until recently hard to simulate on a lattice.




For QCD like theories, SU(N) gauge group Ny flavours
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For the right choice of Ny the first term is negative, the second is positive
B(g.) =0 is an IR fixed point

For g, small approximation is credible but of limited validity.

Supersymmetric theories are easier to analyse. Additional constraints due to R-symmetry
and analyticity of the superpotential. There are arguments for fixed points away from the
perturbative regime. In suitable limits these match on to the perturbative fixed points.




In 1994 Seiberg analysed N = 1 supersymmetric gauge theories which are the direct SUSY
extensions of QCD.

SU(N) gauge group

Flavour symmetry
SU(Nf) X SU(Nf) X U(I)B X U(I)R

vector & axial symmetries baryon charge R-charge

Each 2-component fermion — chiral scalar superfield

A theory with vector gauge fields and no gauge anomalies requires two ‘quark’ chiral super-
fields @, @ belonging to the fundamental representation and its conjugate

Gauge fields are contained in a chiral spinor superfield A, belonging to the adjoint rep
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f = fundamental representation dimension, dimension N for SU(N)

f is conjugate

adj. is the adjoint, dimension N? — 1

In addition there are conjugate anti-chiral fields

R-symmetry is anomaly free, unique in this theory

ro is the R-charge for @, 7\, = 1 from conformal symmetry and gauge invariance
For chiral scalar fields at a superconformal fixed point scale dimension A = %r




. . 2
F‘rommutar1tyA210rr2§

2
3

But there may be R-charges < % in a confining theory

r = % is a free theory

In the N = 1 theory with confinement physical gauge singlet states are mesons QQ and
baryons @, Q"
QQ has R-charge 2rg, Q" QN R-charge Nrq

: 2
Require 2rg > 3
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For this theory there is an exact 8-function formula

3
g° 3N — Ny +2Nyq(9)
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Yo(g) is the anomalous dimension for @, Q chiral fields.
There is then an IR fixed point for

Expect confinement for Ny < 3N, rg < %
rg > 3 for Ny > 3N, 3N < N; < 3N is the conformal window




There is also a dual magnetic theory with the same flavour symmetries
This theory has the same IR fixed point
Electric and Magnetic theories are in the same universality class

Duality: strong coupling electric «+» weak coupling magnetic

Dual theory is a SU(NN) gauge theory, N = Ny — N

Chiral scalar fields g, ¢
Gauge chiral fermion field A,
Additional gauge singlet chiral scalar M
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g, g, M become free when r, =) =

Asymptotic freedom requires Ny > %N

baryons Q% ~ éﬁ, QY ~ qﬁ, M ~ QQ or Nrg = qu, M = 2rQ.
There is a superpotential ggM with R-charge 2

This ensures gg ~ 0, require 2r, + ryy = 2.




For the magnetic theory there are two couplings

Gauge coupling g, also y where W = yqgMgq

g9* 3N — N;+2N5v,(9,9)

6 1- 5N
By(9:y) = y(1(9,9) + 27%(9, 7))

At a fixed point g = g,y = U

Be(g,y) = —3
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Duality has many consistency checks

Most significant is the 't Hooft anomaly matching condition

Coefficient of triangle anomaly for fermion flavour currents has no dynamical corrections
Should match between theory and its dual

Non trivial tests from matching of anomalies for

SU(Nf)s, SU(Nf)2U(1)B, SU(Nf)2U(1)R, U(1)32U(1)R, U(l)R, U(l);?,

SU(N;)? N=—N+ Ny
SU(N;)*U(1)r : )= N(r, — 1)+ Ns(rar — 1)

U(1)2U(1)r 0= 1 ="L(r,~1)

U(].)RZ 2NNf(7‘Q - 1)+N2— 1= QNNf(Tq— 1)+N2 - 1+Nf2(‘l"M— 1)
U(I)R3 : 2NN¢(rg — 1)3+N2— 1= ZNNf(rq — 1)3+N2 — 1+Nf2(7‘M — 1)3




Describe here further very non trivial tests based on a supersymmetric index

Assume a SUSY charge Q and conjugate Q" such that
{Q,0"}=2H, Q*=0, [H,Q=0
Q, Q" change the fermion number F' by +1

Index I counts states |1}, Qlv) =0, |¢) # Q|d)

For such states H|¥) = 0, and also Q"|¢) =0,

otherwise H|Y) = E|¢) = |[¢) = QQ"|¢)/E

Must have £ > 0, if E > 0 then {|¢), Q' |¢)} is a multiplet with 2-fold degeneracy
For the two states F differs by 1




I = try—((-1)")
=tr((-1)" e )
= tr((=1)Fe 7+ Q+Q+X+}) X arbitrary

If there are hermitian operators R commuting with H, Q, Q" define
I(t) = try—o ((—1)"t%)
I can be expressed as a functional integral, D Sen in 1987, Romelsburger in 2005
I= d[fields] e
periodic fields on $3xS1

S is a general vector, scalar N' = 1 supersymmetric action on S® x S*, all fields periodic on
S up to a twisting to incorporate t%. §oS = 0 where dg? = 0. Can modify S — S+doX.
Use to localise the action so evaluation becomes a Gaussian integral. [ is a topological
invariant under deformations of S




Application to N = 1 superconformal theories, in 4-dimensions spinor indices a, & = 1, 2

The ' = 1 superconformal algebra involves supercharges Q., Q4, momenta P, s, two SU(2)
like angular momentum operators Js, J«, J3, J+, dilation operator H and the R-charge R
plus some conformal partners S¢, S® and K¢

Label states by A, j, j eigenvalues of of H, R, Js, J3, A is the scale dimension, A = 0 is
the vacuum
Choose @ = Q,, Q" = S' then superconformal algebra gives
{0,0"}=2H for H=H-2J5—3R
This requires A > 27 + 37‘

If Q) = Q') = 0 and hence A = 2j + $r the representations of the full algebra are
short or BPS.

A representation with A > 25 + 37‘ is long,

as A — 27 + %r it may be decomposed into two short representations




In the superconformal algebra R = R + 2J3 and J3 commute with H. The index is then
defined by

I(ta -T) = trH=0((—1)FtRa:2J3)

Chiral free fermion superfield ¢ — 1, then
p0)0) has A=1,7=2%j=5=0 =  Hep(0)0)=0

For anti-chiral conjugate @ — 1 then
GO0 hasA=3 r=—3+1j=07=5 = HB(0)0)=0

momentum operators Pig, Pos have A =1, 7 = :l:%, j =5, 7 = 0 and so commute with H

For free chiral scalar fields single particle states with 1 = 0 are { P[5 P53(0)[0), Pl Ps312(0)|0) }
For these states

45 _ 43
(1—tz)(1 -tz ')

is(t, @) = try=o((—1)""2*?) =




For the gauge multiplet A, — fa5 and for the conjugate As — fas
A(00) has A=Fr=1j==%57=0 =  HX(0)[0)=0
foO)0)has A=2,r=—14+1,j=0,7=1 =  Hf(0)0)=0

Since PyyA1(0)|0) = P12A2(0)|0) a basis of states with H = 0 is then
{PBPEM(0)[0), PXa(0)0) P 3 f2(0)[0)}

The corresponding index becomes

‘iv(t, :v) — tI‘H=0 ((—I)FtRIL‘2J3) = —




Extension to additional flavour symmetries and gauge group

For flavour and gauge groups there are characters

Xr(y) = tr R(yfl ! yé’!? ... ), H; Cartan generators, for each flavour group representation R
XG (z) for each gauge group representation G

For SU(N), xr(y) can be expressed as a symmetric homogeneous function of variables
Yoo UNs [0 =1

For the conjugate XR(’lJ) = XR(y'l), xa(z) = XG(Z—I)
Let p=tz, g =tz ', then

i, 0,7, 2) = t"xr(Yy)xc(2) = "xrly xc(z) _ xr(Wxc(2) — pgxr(u xc(z")
FHBHE (1-ta)1—ta ) } (1-p(1-9

absorbing ¢ in ¥ so that t"xr(y) = xr(w), t "xr(y!) = xr(u 1),
Also

iv(p,g,2) = — (%9 + &1) Xadj.(2)




The total index requires summing over ‘multi-particle states’ and projecting on gauge singlet
states, 1 = 1y + 1g,

1

I(p,q,1) = / duu(z) exp(zﬁi(pn, qn’yn,zn))

gauge group n=1

The group integration is what is left of the functional integral, the exponential is a one loop
determinant, each n corresponds to ‘n-particle states’, (also referred to as the plethystic
exponential)

The exponential sums can be evaluated using

s (Sa i e9)

n=1

=I'(y;p,q)

H 1 — y—lpj+1qk+l
PricS e V'
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Require |p|, |g| <1
The infinite product I" plays an important role, it is an elliptic Gamma function

['(y;p,9) U'(pg/y;p,q) = 1

There are many other non trivial identities




Resumé on infinite products

(z;p) = [I726(1—2p"),  6O(z;p) = (z;p) (pz~*; p)
6 is related to Jacobi theta functions, ['(z,z7;p,q) = 1/6(z; p)8(z 7, q)

Crucial property of I" ‘g-difference equation’

[(gz;p,q) =0(z;p) (z;p,9)  Tlpz;p,q) = 6(z;9) (z;p, q)
flz;p) = f(zy,...,z,; p) is pelliptic if it is invariant under z; — px; for each ¢
For n = 1 since 8(pzx; p) = —0(a:'p)/:z: can take

O(trz; :
flz;p) = H 9( i) if Hi\;ltk = HkN=1'wk

WiT; p)

F(z;p,q) = F(z,...z,;p,q) is elliptic hypergeometric if it satisfies g-difference equations

F(z;p,@)lz;—qu; = hilz;p) Fz;p,q)  for  hi(z;p) pelliptic  for all 4
Can construct such F’s using elliptic Gamma functions. Spiridonov conjecture: ratios of
integrands for electric and magnetic indices for dual theories are elliptic hypergeometric




Apply index to Seiberg dual theories. R-charges and flavour and gauge group representa-
tions determine ig, i,y which then determine 1.

The equality Ig = I is a non trivial test for duality

Consider the simplest non trivial case is N =2, Ny =3

Then SU(3) x SU(3) x U(1)g — SU(6) since SU(2) representations are self conjugate

SU(6) characters depend on vy, Y2, U3, Y4, Us, Yg Subject to [Lvi=1

Gauge group SU(2) characters depend on a single variable z
fundamental x>(z) = 2 +2 1, adjoint xs(z) = 2 + 1+ 22

In the electric theory Q,Q belong to the 6-dimensional fundamental representation of

SU(6), r =3

The dual magnetic theory has gauge group SU(1) which is trivial, implying a free theory

~ e 1 : . : . )
q, G, M belong to the 15-dimensional antisymmetric representation of SU(6), r = 3




single particle indices
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multiparticle indices
Ig (p’ q, y)

0o 1
=,[5' d[.I.(Z) €xXp z EZE(pna q,y", zn)

U(2) n=1
dz [I°_, D(wiz; p, q) [(uiz %;p, q)
=1 2 I'(2%p,q) (2% p,q)

1
— 0:0) (€0) — }{
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1,
In(p,q,y) = exp Z;W(P"',q"’y"')

n=1

H P('U,i'll:j;p, q)

1<i<j<6

The contour encloses infinitely many poles

§ b ‘ ! 9> 2 B3 A
I ,‘;-'4‘.—;.4,.} Ny v A Ay 'T‘""-*""‘C Rt (a0 e oy v . e e ot ;.-l;.u’-." ,,.‘5._"_;‘,".'._‘.1';._‘-,_').,“4 Ay o
NS ES B TGS SN I e D N SIS W N NP AR Sl B T O RN X | N AR AN R




The identity of Iz and I, is a very non trivial result found by Spiridonov in 2001

The proof is not an explicit evaluation by summing up residues of poles, but involves show
that both sides satisfy the same recurrence relations and are equal in some special limiting
case

When ¢ = 0 and the integral depends only on p, as well as y, the result was only known in
the 1980’s




For Seiberg dual theories for gauge group SU(N) flavour group SU(Ny) x SU(Ns)xU(1)g

Electric index
IE(pa 4, Y, y,’ 'U)SU(N),r
1 1
=P q)N—li/ ﬁ dz; [icien, [licjen D0 yizj, tv N /(yi25); p, q)
il j=1 £MR; HISKJ'SN r (zi/ 2j, 2/ %; D, q) [TV 2=1

where y = (y,,. .., ny), v =(,..., y’Nf) correspond to SU(Ny) x SU(N¢), vto U(1)p
and

[(z1, 2,0, q) = I'(@1; p,¢) I'(z2; 2, 9)
Magnetic index has an additional meson contribution

IM(p,q,y,y',v)SU(N),F= H L(t™y/y}p,9) 1e(p, g, y—l,y'_l,v)su(ﬁ),f
ISi,jSNf

Require y_l = (yl—la oo ,ny—l)a yl—l = (yll_la RRE :‘/Nf_l) and

N s
szfly'j=1 tl=pg r=rg T=m,




Rains proved in 2003

IE(pa q,Y, y'a v)SU(N),r = IM(p, q.Y, y,’ v)SU(N),F

so long as i )
N+N=Ny r+7r=1 Nr=Nr ry=2r

The identities only follow for the precise values of the R-charges, and representation content,
required by Seiberg duality. The index does not know about the conformal window

There are corresponding results for gauge groups SO(N) and Sp(2N), with flavour sym-
metry groups SU(Ny) and SU(2N), require different but similar integral identities proved
by Rains

Conformal windows are respectively

SIN—-2)<N;<3(N-2), 3(N+1)<N;<3(N+1)

Many extensions to theories with various additional matter fields, leads to as yet unproved
identities




Special case N =2, Ny =4, SU(4) x SU(4) x U(1) — SU(8)

Electric theory

Field
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Dual magnetic theory, gauge group SU(2)
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A is the 28-dimensional antisymmetric tensor representation of SU(8), A ~ Q?

However in this case there are multiply dual theories

The formula for the index has a set of discrete symmetries which match these dualities




Conclusions
The index is a very non trivial test of Seiberg duality

Spiridonov has constructed the index for essentially all dual theories constructed in the
1990’s and has found many new mathematical identities.

Conversely known identities can be a method of finding new dualities, especially for multiply
dual theories

It may be applicable in cases where the usual techniques fail, e.g. in three dimensions where
't Hooft anomaly matching cannot be used

Duality may be significant in realistic theories, no handle on it at present without super-
symmetry




