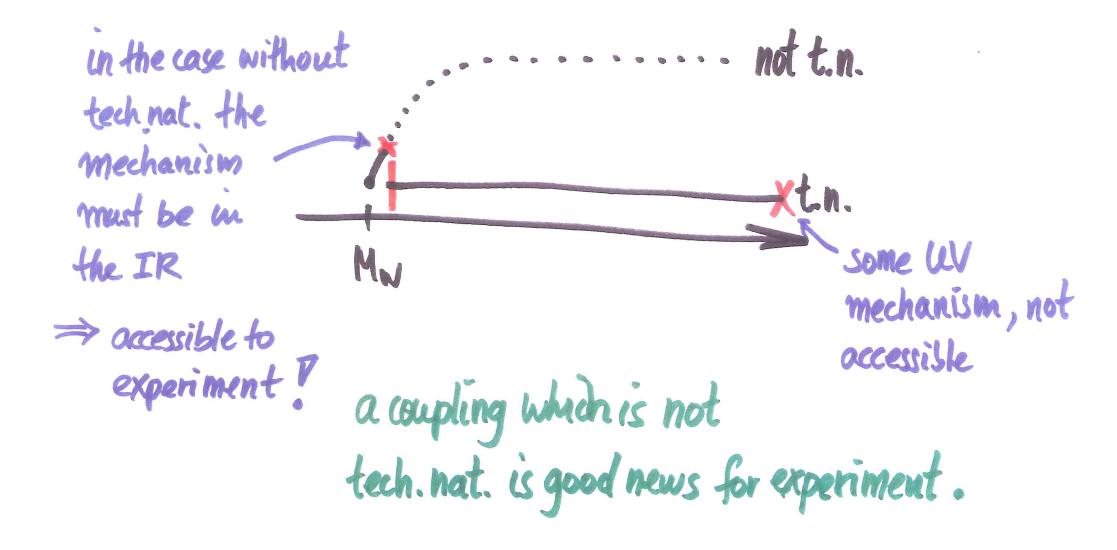
Physics mit Schmaltz

Lecture I

Locality: can expand L in power series in \$,4,3,

$$\mathcal{L} = c_0 M' + c_2 M' H' H + M \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5 + \mathcal{L}_6 + \cdots$$

$$\frac{M^2}{M} = \frac{M^2}{M^2} + \frac{M^2}{M^2}$$


mass dimensions: $[\partial_{\mu}] = 1$ $[\mathcal{X}] = 4$ $[\phi] = 1$ $[\mathcal{Y}] = 3/2$ [M] = 1 some UV mass scale

Examine dimensionless couplings first 24 $\mathcal{L}_{4}^{\text{toy}} \sim (\partial \phi)^{2} + \lambda^{2} \phi^{4} + \overline{\psi} \overline{\delta} \psi + \lambda_{\pm} \phi \overline{\psi} \psi$ what is the theoretically natural/expected size for

the couplings λ, λ_{t} ?

(at the weak scale)

for a technically natural coupling the mechanism which explains smallness can be in the far UV

in
$$\chi_{4}^{SM}$$
 all couplings are tech.nat. (i) ho sign
of N.P.
nearby.
 λ_{quarks} , $\lambda_{exptone}$ chiral symmetry
 g_{s}, g, g' gauge symmetry
 $\lambda_{Higgs}^{2.1}$ no new symmetry in $\lambda_{4} \rightarrow 0$ limit but
 λ_{4} has natural size in SM
 $\delta_{\lambda_{Higgs}} \sim 0.1$

the rest of the SM Lagrangian ...

$$C_0 M^4 + C_2 M^2 H^4 H + \chi_4 + \chi_5 + \chi_6 + \dots$$

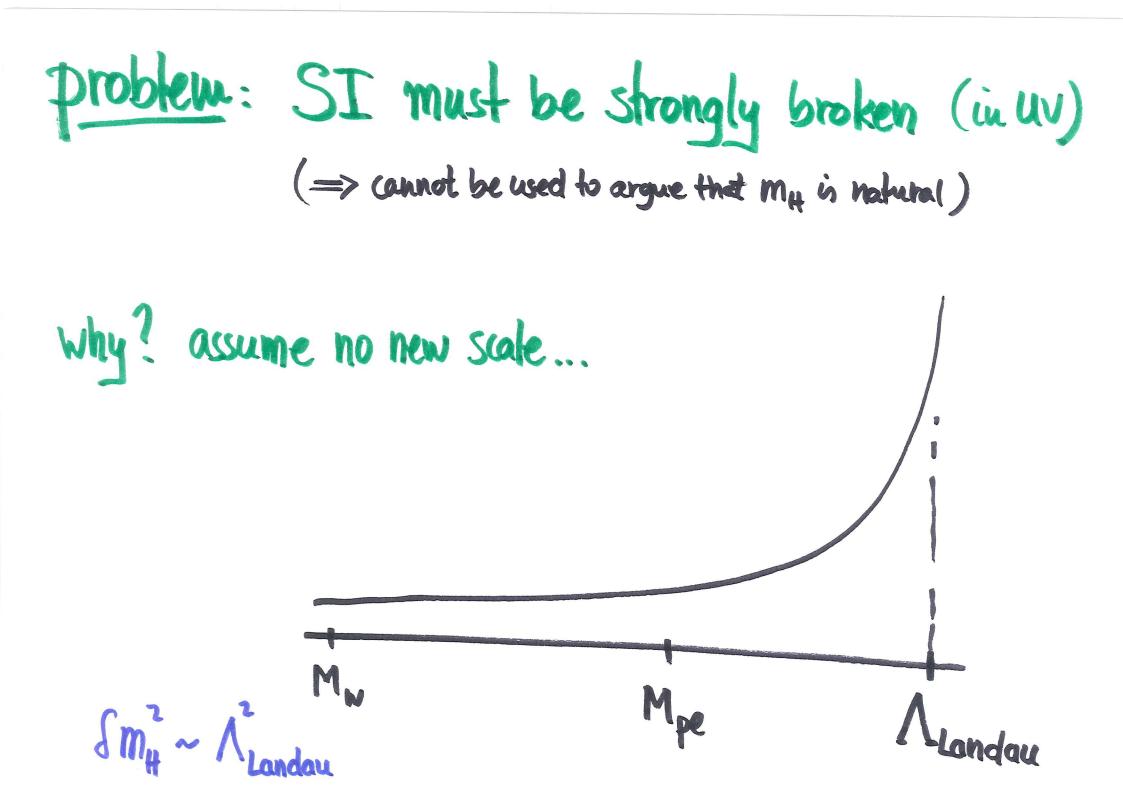
 $C_0 M^6 + C_2 M^2 H^4 H + \chi_4 + \chi_5 + \chi_6 + \dots$
 $C_0 M^6 + C_2 M^2 H^4 H + \chi_4 + \chi_5 + \chi_6 + \dots$
 $C_0 M^6 + C_2 M^2 H^4 H + \chi_4 + \chi_5 + \chi_6 + \dots$
 $C_0 M^6 + C_2 M^2 H^4 H + \chi_4 + \chi_5 + \chi_6 + \dots$
 $C_0 M^6 + C_2 M^2 H^4 H + \chi_4 + \chi_5 + \chi_6 + \dots$
 $C_0 M^6 + C_2 M^2 H^4 H + \chi_4 + \chi_5 + \chi_6 + \dots$
 $C_0 M^6 + C_2 M^2 H^4 H + \chi_4 + \chi_5 + \chi_6 + \dots$

is
$$m^{2}H^{4}H$$
 tech. nat?
symmetry: $H \rightarrow H + const$ can forbid $m^{2}H^{4}H$
but: broken bodly by other couplings $\lambda_{4} Q H U^{c}$
 $\lambda^{2} H^{4}$
 $g^{2} W_{\mu} W^{\mu} H^{2}$

how about scale invariance symmetry ? $\phi \rightarrow s\phi(sx)$

 $\phi \rightarrow s \phi \kappa$ equivalent to 4 -> 5^{3/2} 4(SX) $4 \rightarrow 5^{3/2} 4(x)$ $d^{4}x \rightarrow \frac{1}{5^{4}}d^{4}x$ $\partial \rightarrow s \partial$

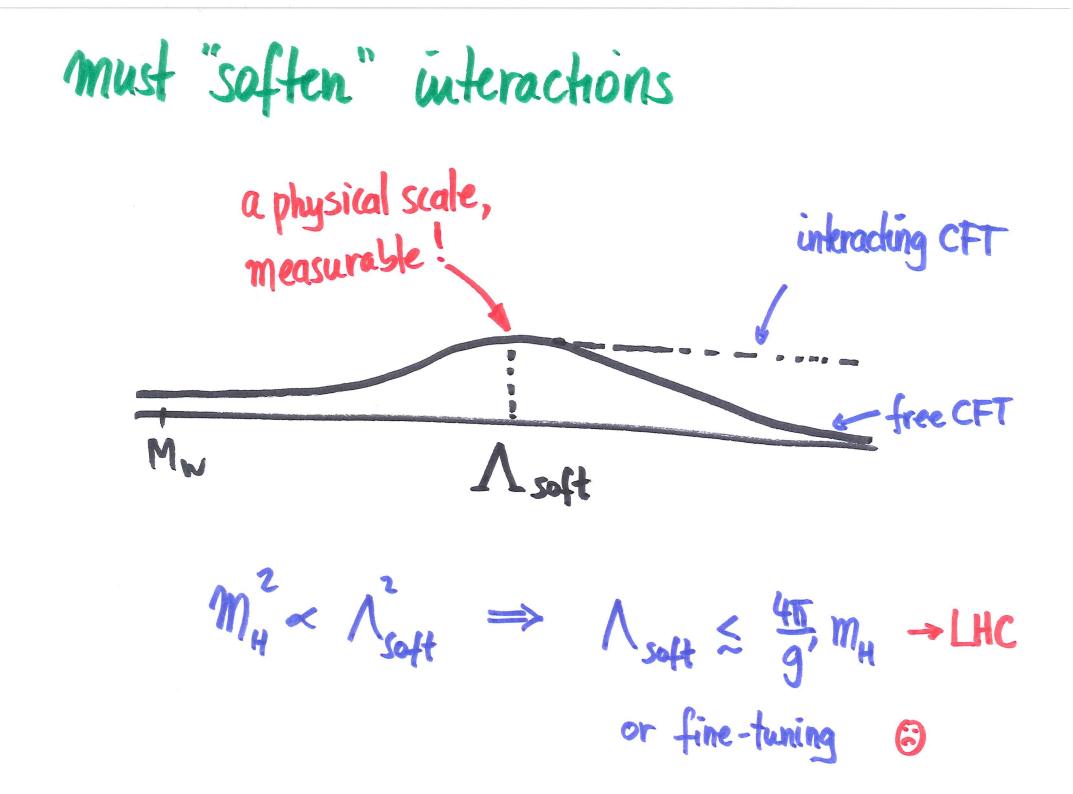
Scale invariance and the lfiggs


SM approximately Scale inv't near Mweak

 $m_{H}^{2}H^{4}$ $g(m_{M})$

 $\frac{d}{d l_{H_{\mu}}} m_{H}^{2} \sim m_{H}^{2} \frac{g^{2}}{16\pi^{2}} \dots$

technically matural in IR effective theory

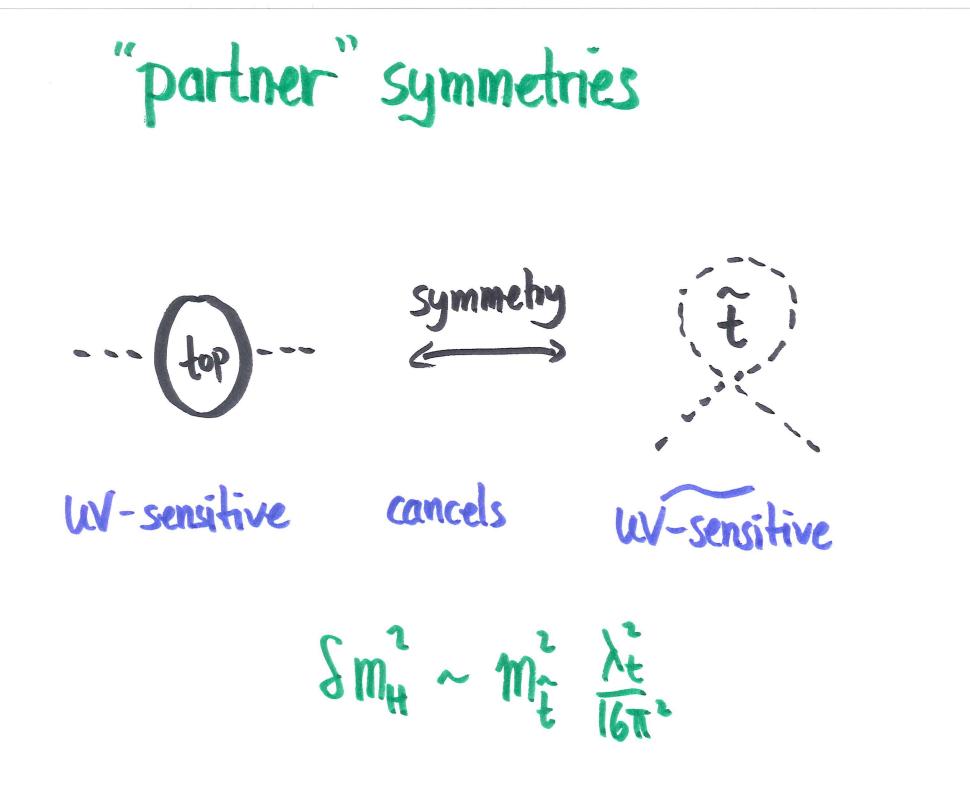

this problem does not occur for λ_{up}

i.e. there is no coupling getting large and breaking $u^c \rightarrow e^{i\theta}u^c$ symmetry

Consistent to assume no large chiral symmetry violation in UV

not consistent to assume no scale violation in UV

final points:


Asoft? embed U(1), in non-Abelian group

Mpe? perhaps QFT does not apply to gravity... desperate... J know...

other symmetries that can make Higgs mass (technically) natural:

+ SUSY HAY

- + Shift-(Goldstone)-sy. H->H+const
 - + Combinations (twin,...)

e.g. SUSY

+ $2 \implies Sm_{H}^{2} = -\frac{3}{4\pi^{2}}\lambda_{t}^{2}m_{\tilde{t}}^{2}\log \Lambda_{uv}$

 $\left| \frac{\delta m_{H}}{m_{H}^{2}} \right| \approx 40 \left[\frac{m_{\tilde{t}}}{T_{eV}} \right]^{2} \left[\frac{\log (M_{UV}/m_{\tilde{t}})}{\log (M_{UV}/m_{\tilde{t}})} \right]$ 125 Gel Somewhat tuned ... similar in all other known partner models

the SM Lagrangian $c_{0}M^{4} + c_{1}M^{2}H^{4}H + X_{4} + \frac{Y_{5}}{M} + \frac{X_{6}}{M^{2}} + \dots$ (HL) only 1 term allowed: or Dirac neutrino mass 10 ¹⁴ GeV **A HLN^c**

Optimistic: new physics @ few TeV = M (probably coupled to Higgs - naturally) inkgrak out ...

 $Z_6 = H^{\dagger} g_{\mu} H H^{\dagger} g_{\mu} H = H^{\dagger} g_{\mu} H = R g^{\mu} e_{R} + H^{\dagger} \sigma^{\mu} H W_{\mu\nu}^{\alpha} B^{\alpha} H^{\nu} + X_7 + X_8 + \dots$ + H^tH B^{MU} B_{MU} + H^tH M^a_{MU} W^a_{MU} + >100 more at M² dim 6 predictive? $M_{+} X \sim \frac{1}{q^{2}} + \frac{1}{M^{2}} = \frac{1}{q^{2}}(1 + \frac{q^{2}}{M^{2}})$ expansion in $\frac{q^{2}}{M^{2}}$

most violate flavor symmetries

e.g. $(\overline{d_{L}} \chi_{\mu} S_{L})$ + h.c. complex ε_{K} : $M \ge 10^{4}$ TeV M^{2} ral Δm_{K} : 2 10³ TeV $(\bar{c}u)$ $D-\overline{D}: \gtrsim 10^3 \text{ TeV}$ (db) $B-\overline{B}: \gtrsim 3 \cdot 10^2 \text{ TeV}$ $(\overline{S}b)$ $B_s \bar{B}_s$: $\gtrsim 10^2 \text{ TeV}$ assume minimal flavor violation - tech. nat.

A lliggs physics example

$$Z_6 \sim C_1 g'^2 H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + C_2 g^2 H^{\dagger} H W_{\mu\nu} W^{\alpha\mu\nu} + C_{12} g'g H^{\dagger} \sigma^{\alpha} H W_{\mu\nu}^{\alpha} B^{\mu\nu} = \frac{M^2}{M^2}$$

plug in
$$\langle H \rangle$$
: $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ V+h \end{pmatrix}$

expand...
$$V^2 F_{\mu\nu}^2 + vh F_{\mu\nu}^2 + h^2 F_{\mu\nu}^2$$

PEW $h \rightarrow V_{\mu\nu}^2$

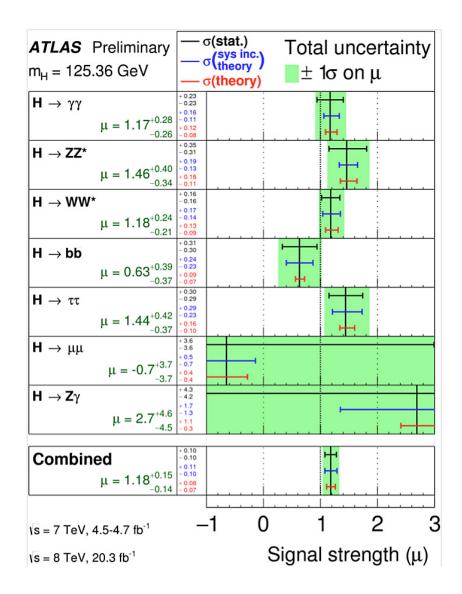
$$\Rightarrow c_1 g_1^{12} \frac{v^2}{2M^2} B_{\mu\nu\nu} B^{\mu\nu\nu} + c_2 g_2^{2} \frac{v^2}{2M^2} W_{\mu\nu}^{a} W_{a}^{\mu\nu\nu} + c_{12} g_3' \frac{v^2}{2M^2} W_{\mu\nu\nu}^{3} B^{\mu\nu\nu}$$
conactions to SU(2) KU(1) kinetic terms, Su(2) breaking Z-Y mixing
rescale $B_{\mu\nu}, W_{\mu\nu}^{a} \Rightarrow$ redefine $g_1 g'$ "S" = $16\pi c_{12} \frac{v^2}{M^2}$

$$+ (c_1 g_1'^2 \frac{v^2}{M^2} \frac{h}{m^2} B_{\mu\nu}^2 + c_2 g_1^2 \frac{v^2}{M^2} \frac{h}{m^2} (W_{\mu\nu\nu}^{a})^2 + c_{12} g_3 \frac{v^2}{M^2} \frac{h}{m^2} W_{\mu\nu\nu}^{3} B^{\mu\nu\nu}$$

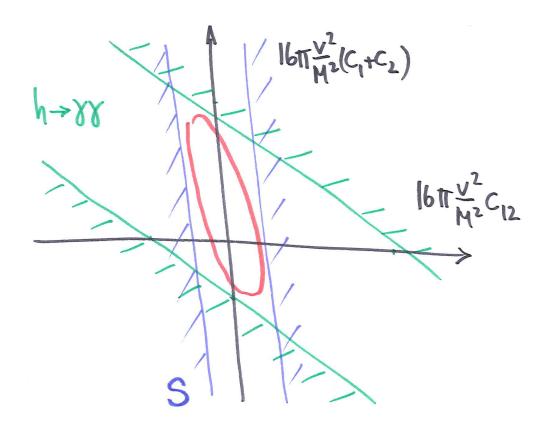
$$= 4e^2 \frac{v^2}{M^2} (c_1 + c_2 + c_{12}) \frac{h}{v} \frac{F_{\mu\nu\nu}^2}{q} + \dots \frac{h}{v} F_{\mu\nu} Z^{\mu\nu} + \dots \frac{h}{v} Z_{\mu\nu} Z^{\mu\nu}$$

$$= c_{\gamma\gamma} e^2 \qquad c_{\gamma2}^2 \qquad c_{\gamma2}^2$$

$$= c_{\gamma\gamma} e^2 \qquad c_{\gamma2}^2 \qquad c_{\gamma2}^2$$


PDG 2015: Z-pole

Quantity	Value	Standard Model	Pull
M_Z [GeV]	91.1876 ± 0.0021	91.1880 ± 0.0020	-0.2
$\Gamma_Z [\text{GeV}]$	2.4952 ± 0.0023	2.4955 ± 0.0009	-0.1
$\Gamma(had) \ [GeV]$	1.7444 ± 0.0020	1.7420 ± 0.0008	
$\Gamma(inv)$ [MeV]	499.0 ± 1.5	501.66 ± 0.05	
$\Gamma(\ell^+\ell^-)$ [MeV]	83.984 ± 0.086	83.995 ± 0.010	
$\sigma_{\rm had}[{\rm nb}]$	41.541 ± 0.037	41.479 ± 0.008	1.7
R_e	20.804 ± 0.050	20.740 ± 0.010	1.3
R_{μ}	20.785 ± 0.033	20.740 ± 0.010	1.4
R_{τ}	20.764 ± 0.045	20.785 ± 0.010	-0.5
R_b	0.21629 ± 0.00066	0.21576 ± 0.00003	0.8
R_c	0.1721 ± 0.0030	0.17226 ± 0.00003	-0.1
$A_{FB}^{(0,e)}$	0.0145 ± 0.0025	0.01616 ± 0.00008	-0.7
$A_{FB}^{(0,\mu)}$	0.0169 ± 0.0013		0.6
$A_{FB}^{(0, au)}$	0.0188 ± 0.0017		1.6
$A_{FB}^{(0,b)}$	0.0992 ± 0.0016	0.1029 ± 0.0003	-2.3
$A_{FB}^{(0,c)}$	0.0707 ± 0.0035	0.0735 ± 0.0002	-0.8
$A_{FB}^{(0,s)}$	0.0976 ± 0.0114	0.1030 ± 0.0003	-0.5
\bar{s}_{ℓ}^2	0.2324 ± 0.0012	0.23155 ± 0.00005	0.7
t	0.23176 ± 0.00060		0.3
	0.2297 ± 0.0010		-1.9
A_e	0.15138 ± 0.00216	0.1468 ± 0.0004	2.1
	0.1544 ± 0.0060		1.3
	0.1498 ± 0.0049		0.6
A_{μ}	0.142 ± 0.015		-0.3
A_{τ}	0.136 ± 0.015		-0.7
	0.1439 ± 0.0043		-0.7
A_b	0.923 ± 0.020	0.9347	-0.6
A_c	0.670 ± 0.027	0.6676 ± 0.0002	0.1
A_s	0.895 ± 0.091	0.9356	-0.4


Quantity	Value	Standard Model	Pull
$m_t [{ m GeV}]$	173.24 ± 0.95	173.87 ± 0.87	-0.7
M_W [GeV]	80.387 ± 0.016	80.363 ± 0.006	1.5
	80.376 ± 0.033		0.4
Γ_W [GeV]	2.046 ± 0.049	2.090 ± 0.001	-0.9
	2.196 ± 0.083		1.3
M_H [GeV]	125.6 ± 0.4	125.5 ± 0.4	0.1
$ ho_{\gamma W}$	0.45 ± 0.31	0.01 ± 0.03	1.4
,	0.12 ± 0.43	0.00 ± 0.03	0.3
$ ho_{\gamma Z}$	0.08 ± 0.28	0.01 ± 0.04	0.2
ρ_{ZW}	0.30 ± 0.39	0.00 ± 0.01	0.8
$g_V^{ u e}$	-0.040 ± 0.015	-0.0397 ± 0.0001	0.0
$g_A^{\nu e}$	-0.507 ± 0.014	-0.5064	0.0
$Q_W(e)$	-0.0403 ± 0.0053	-0.0473 ± 0.0003	1.3
$Q_W(p)$	0.064 ± 0.012	0.0708 ± 0.0003	-0.6
$Q_W(Cs)$	-72.62 ± 0.43	-73.25 ± 0.01	1.5
$Q_W(\mathrm{Tl})$	-116.4 ± 3.6	-116.90 ± 0.02	0.1
\hat{s}_Z^2 (eDIS)	0.2299 ± 0.0043	0.23126 ± 0.00005	-0.3
τ_{τ} [fs]	291.13 ± 0.43	291.19 ± 2.41	0.0
$\frac{1}{2}(g_{\mu}-2-\frac{\alpha}{\pi})$	$(4511.07 \pm 0.79) \times 10^{-9}$	$(4508.68 \pm 0.08) \times 10^{-9}$	3.0

PDG 2015: non-Z-pole

ATLAS Run1: Signal strength

the data :• Precision electroweak $S = -0.03 \pm 0.10$ PDG(a) 95%)• $h \rightarrow 88$ $C_{88} = 0.014 \pm 0.058$ • $h \rightarrow 88$ $C_{88} = 0.014 \pm 0.058$ (h $\rightarrow 82$ $C_{82} < 0.2$)Falkowski etal hep-ph/
1505.00046

Bound on	M?
$C_i = 1$	⇒ M ≥ 6 TeV
$C_i = \frac{1}{16\pi^2}$	⇒ M ≈ 500 GEV

We are pleased to announce the fourth Higgs Effective Field Theories workshop (HEFT2016) will take place at the Niels Bohr Institute at the University of Copenhagen from Wednesday 26th to Friday 28th October 2016. Pervious installments of the workshop were held at CERN (2013), Madrid (2014) and Chicago in 2015.