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LHC discoveries important for

Cosmology
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July 4, 2012, Higgs at ATLAS and CMS
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Higgs boson properties

Atlas - MH = 125.36 ± 0.41 GeV

CMS - MH = 125.03 ± 0.29 GeV
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) µSignal strength (
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ATLAS Prelim.
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arXiv:1408.7084

0.27-
0.27+ = 1.17µ

γγ →H 

 0.11-
 0.16+

 0.23-
 0.23+

arXiv:1408.5191

0.33-
0.40+ = 1.44µ
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JHEP11(2014)056
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Total uncertainty
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released 09.12.2014

New resonance properties are consistent with those of the Higgs

boson of the Standard Model
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Searches for new physics, SUSY

Model e, µ, τ, γ Jets Emiss
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MSUGRA/CMSSM 0 2-6 jets Yes 20.3 m(q̃)=m(g̃) 1405.78751.7 TeVq̃, g̃

MSUGRA/CMSSM 1 e, µ 3-6 jets Yes 20.3 any m(q̃) ATLAS-CONF-2013-0621.2 TeVg̃

MSUGRA/CMSSM 0 7-10 jets Yes 20.3 any m(q̃) 1308.18411.1 TeVg̃

q̃q̃, q̃→qχ̃
0
1 0 2-6 jets Yes 20.3 m(χ̃

0
1)=0 GeV, m(1st gen. q̃)=m(2nd gen. q̃) 1405.7875850 GeVq̃

g̃g̃, g̃→qq̄χ̃
0
1 0 2-6 jets Yes 20.3 m(χ̃

0
1)=0 GeV 1405.78751.33 TeVg̃

g̃g̃, g̃→qqχ̃
±

1→qqW±χ̃
0
1

1 e, µ 3-6 jets Yes 20.3 m(χ̃
0
1)<200 GeV, m(χ̃

±

)=0.5(m(χ̃
0
1)+m(g̃)) ATLAS-CONF-2013-0621.18 TeVg̃

g̃g̃, g̃→qq(ℓℓ/ℓν/νν)χ̃
0
1

2 e, µ 0-3 jets - 20.3 m(χ̃
0
1)=0 GeV ATLAS-CONF-2013-0891.12 TeVg̃

GMSB (ℓ̃ NLSP) 2 e, µ 2-4 jets Yes 4.7 tanβ<15 1208.46881.24 TeVg̃

GMSB (ℓ̃ NLSP) 1-2 τ + 0-1 ℓ 0-2 jets Yes 20.3 tanβ >20 1407.06031.6 TeVg̃

GGM (bino NLSP) 2 γ - Yes 20.3 m(χ̃
0
1)>50 GeV ATLAS-CONF-2014-0011.28 TeVg̃

GGM (wino NLSP) 1 e, µ + γ - Yes 4.8 m(χ̃
0
1)>50 GeV ATLAS-CONF-2012-144619 GeVg̃

GGM (higgsino-bino NLSP) γ 1 b Yes 4.8 m(χ̃
0
1)>220 GeV 1211.1167900 GeVg̃

GGM (higgsino NLSP) 2 e, µ (Z) 0-3 jets Yes 5.8 m(NLSP)>200 GeV ATLAS-CONF-2012-152690 GeVg̃

Gravitino LSP 0 mono-jet Yes 10.5 m(G̃)>10−4 eV ATLAS-CONF-2012-147645 GeVF1/2 scale

g̃→bb̄χ̃
0
1 0 3 b Yes 20.1 m(χ̃

0
1)<400 GeV 1407.06001.25 TeVg̃

g̃→tt̄χ̃
0
1 0 7-10 jets Yes 20.3 m(χ̃

0
1) <350 GeV 1308.18411.1 TeVg̃

g̃→tt̄χ̃
0
1

0-1 e, µ 3 b Yes 20.1 m(χ̃
0
1)<400 GeV 1407.06001.34 TeVg̃

g̃→bt̄χ̃
+

1 0-1 e, µ 3 b Yes 20.1 m(χ̃
0
1)<300 GeV 1407.06001.3 TeVg̃

b̃1b̃1, b̃1→bχ̃
0
1 0 2 b Yes 20.1 m(χ̃

0
1)<90 GeV 1308.2631100-620 GeVb̃1

b̃1b̃1, b̃1→tχ̃
±

1 2 e, µ (SS) 0-3 b Yes 20.3 m(χ̃
±

1 )=2 m(χ̃
0
1) 1404.2500275-440 GeVb̃1

t̃1 t̃1(light), t̃1→bχ̃
±

1 1-2 e, µ 1-2 b Yes 4.7 m(χ̃
0
1)=55 GeV 1208.4305, 1209.2102110-167 GeVt̃1

t̃1 t̃1(light), t̃1→Wbχ̃
0
1

2 e, µ 0-2 jets Yes 20.3 m(χ̃
0
1) =m(t̃1)-m(W)-50 GeV, m(t̃1)<<m(χ̃

±

1 ) 1403.4853130-210 GeVt̃1

t̃1 t̃1(medium), t̃1→tχ̃
0
1

2 e, µ 2 jets Yes 20.3 m(χ̃
0
1)=1 GeV 1403.4853215-530 GeVt̃1

t̃1 t̃1(medium), t̃1→bχ̃
±

1 0 2 b Yes 20.1 m(χ̃
0
1)<200 GeV, m(χ̃

±

1 )-m(χ̃
0
1)=5 GeV 1308.2631150-580 GeVt̃1

t̃1 t̃1(heavy), t̃1→tχ̃
0
1

1 e, µ 1 b Yes 20 m(χ̃
0
1)=0 GeV 1407.0583210-640 GeVt̃1

t̃1 t̃1(heavy), t̃1→tχ̃
0
1 0 2 b Yes 20.1 m(χ̃

0
1)=0 GeV 1406.1122260-640 GeVt̃1

t̃1 t̃1, t̃1→cχ̃
0
1 0 mono-jet/c-tag Yes 20.3 m(t̃1)-m(χ̃

0
1 )<85 GeV 1407.060890-240 GeVt̃1

t̃1 t̃1(natural GMSB) 2 e, µ (Z) 1 b Yes 20.3 m(χ̃
0
1)>150 GeV 1403.5222150-580 GeVt̃1

t̃2 t̃2, t̃2→t̃1 + Z 3 e, µ (Z) 1 b Yes 20.3 m(χ̃
0
1)<200 GeV 1403.5222290-600 GeVt̃2

ℓ̃L,R ℓ̃L,R, ℓ̃→ℓχ̃
0
1

2 e, µ 0 Yes 20.3 m(χ̃
0
1)=0 GeV 1403.529490-325 GeVℓ̃

χ̃+
1
χ̃−
1 , χ̃

+

1→ℓ̃ν(ℓν̃) 2 e, µ 0 Yes 20.3 m(χ̃
0
1)=0 GeV, m(ℓ̃, ν̃)=0.5(m(χ̃

±

1 )+m(χ̃
0
1)) 1403.5294140-465 GeVχ̃±

1

χ̃+
1
χ̃−
1 , χ̃

+

1→τ̃ν(τν̃) 2 τ - Yes 20.3 m(χ̃
0
1)=0 GeV, m(τ̃, ν̃)=0.5(m(χ̃

±

1 )+m(χ̃
0
1)) 1407.0350100-350 GeVχ̃±

1

χ̃±
1
χ̃0
2→ℓ̃Lνℓ̃Lℓ(ν̃ν), ℓν̃ℓ̃Lℓ(ν̃ν) 3 e, µ 0 Yes 20.3 m(χ̃

±

1 )=m(χ̃
0
2), m(χ̃

0
1)=0, m(ℓ̃, ν̃)=0.5(m(χ̃

±

1 )+m(χ̃
0
1)) 1402.7029700 GeVχ̃±

1
, χ̃

0

2

χ̃±
1
χ̃0
2→Wχ̃

0
1Zχ̃

0
1

2-3 e, µ 0 Yes 20.3 m(χ̃
±

1 )=m(χ̃
0
2), m(χ̃

0
1)=0, sleptons decoupled 1403.5294, 1402.7029420 GeVχ̃±

1 ,
χ̃0
2

χ̃±
1
χ̃0
2→Wχ̃

0
1h χ̃

0
1

1 e, µ 2 b Yes 20.3 m(χ̃
±

1 )=m(χ̃
0
2), m(χ̃

0
1)=0, sleptons decoupled ATLAS-CONF-2013-093285 GeVχ̃±

1
, χ̃

0

2

χ̃0
2
χ̃0
3, χ̃

0
2,3 →ℓ̃Rℓ 4 e, µ 0 Yes 20.3 m(χ̃

0
2)=m(χ̃

0
3), m(χ̃

0
1)=0, m(ℓ̃, ν̃)=0.5(m(χ̃

0
2)+m(χ̃

0
1)) 1405.5086620 GeVχ̃0

2,3

Direct χ̃
+

1
χ̃−
1 prod., long-lived χ̃

±

1 Disapp. trk 1 jet Yes 20.3 m(χ̃
±

1 )-m(χ̃
0
1)=160 MeV, τ(χ̃

±

1 )=0.2 ns ATLAS-CONF-2013-069270 GeVχ̃±
1

Stable, stopped g̃ R-hadron 0 1-5 jets Yes 27.9 m(χ̃
0
1)=100 GeV, 10 µs<τ(g̃)<1000 s 1310.6584832 GeVg̃

GMSB, stable τ̃, χ̃
0
1→τ̃(ẽ, µ̃)+τ(e, µ) 1-2 µ - - 15.9 10<tanβ<50 ATLAS-CONF-2013-058475 GeVχ̃0

1

GMSB, χ̃
0
1→γG̃, long-lived χ̃

0
1

2 γ - Yes 4.7 0.4<τ(χ̃
0
1)<2 ns 1304.6310230 GeVχ̃0

1

q̃q̃, χ̃
0
1→qqµ (RPV) 1 µ, displ. vtx - - 20.3 1.5 <cτ<156 mm, BR(µ)=1, m(χ̃

0
1)=108 GeV ATLAS-CONF-2013-0921.0 TeVq̃

LFV pp→ν̃τ + X, ν̃τ→e + µ 2 e, µ - - 4.6 λ′
311

=0.10, λ132=0.05 1212.12721.61 TeVν̃τ

LFV pp→ν̃τ + X, ν̃τ→e(µ) + τ 1 e, µ + τ - - 4.6 λ′
311

=0.10, λ1(2)33=0.05 1212.12721.1 TeVν̃τ

Bilinear RPV CMSSM 2 e, µ (SS) 0-3 b Yes 20.3 m(q̃)=m(g̃), cτLS P<1 mm 1404.25001.35 TeVq̃, g̃

χ̃+
1
χ̃−
1 , χ̃

+

1→Wχ̃
0
1, χ̃

0
1→eeν̃µ, eµν̃e 4 e, µ - Yes 20.3 m(χ̃

0
1)>0.2×m(χ̃

±

1 ), λ121!0 1405.5086750 GeVχ̃±
1

χ̃+
1
χ̃−
1 , χ̃

+

1→Wχ̃
0
1, χ̃

0
1→ττν̃e, eτν̃τ 3 e, µ + τ - Yes 20.3 m(χ̃

0
1)>0.2×m(χ̃

±

1 ), λ133!0 1405.5086450 GeVχ̃±
1

g̃→qqq 0 6-7 jets - 20.3 BR(t)=BR(b)=BR(c)=0% ATLAS-CONF-2013-091916 GeVg̃

g̃→t̃1t, t̃1→bs 2 e, µ (SS) 0-3 b Yes 20.3 1404.250850 GeVg̃

Scalar gluon pair, sgluon→qq̄ 0 4 jets - 4.6 incl. limit from 1110.2693 1210.4826100-287 GeVsgluon

Scalar gluon pair, sgluon→tt̄ 2 e, µ (SS) 2 b Yes 14.3 ATLAS-CONF-2013-051350-800 GeVsgluon

WIMP interaction (D5, Dirac χ) 0 mono-jet Yes 10.5 m(χ)<80 GeV, limit of<687 GeV for D8 ATLAS-CONF-2012-147704 GeVM* scale

Mass scale [TeV]10−1 1
√
s = 7 TeV

full data

√
s = 8 TeV

partial data

√
s = 8 TeV

full data

ATLAS SUSY Searches* - 95% CL Lower Limits
Status: ICHEP 2014

ATLAS Preliminary
√
s = 7, 8 TeV

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.
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Searches for new physics, exotics

CMS Exotica Physics Group Summary – ICHEP, 2014
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Determination of top quark mass

Monte Carlo mass: mt = 172.38 ± 0.10 ± 0.65 GeV

 [GeV]tm
165 170 175 180

0

5

10

CMS 2010, dilepton
-1

JHEP 07 (2011) 049, 36 pb

 4.6 GeV± 4.6 ±175.5 
 syst)± stat ±(value 

CMS 2010, lepton+jets
-1

PAS TOP-10-009, 36 pb

 2.6 GeV± 2.1 ±173.1 
 syst)± stat ±(value 

CMS 2011, dilepton
-1

EPJC 72 (2012) 2202, 5.0 fb

 1.4 GeV± 0.4 ±172.5 
 syst)± stat ±(value 

CMS 2011, lepton+jets
-1

JHEP 12 (2012) 105, 5.0 fb

 1.0 GeV± 0.4 ±173.5 
 syst)± stat ±(value 

CMS 2011, all-hadronic
-1

EPJ C74 (2014) 2758, 3.5 fb

 1.2 GeV± 0.7 ±173.5 
 syst)± stat ±(value 

CMS 2012, lepton+jets
-1

PAS TOP-14-001, 19.7 fb

 0.7 GeV± 0.1 ±172.0 
 syst)± stat ±(value 

CMS 2012, all-hadronic
-1

PAS TOP-14-002, 18.2 fb

 0.8 GeV± 0.3 ±172.1 
 syst)± stat ±(value 

CMS 2012, dilepton
-1

PAS TOP-14-010, 19.7 fb

 1.4 GeV± 0.2 ±172.5 
 syst)± stat ±(value 

CMS combination
September 2014

 0.65 GeV± 0.10 ±172.38 
 syst)± stat ±(value 

Tevatron combination
July 2014 arXiv:1407.2682

 0.52 GeV± 0.37 ±174.34 
 syst)± stat ±(value 

World combination March 2014
ATLAS, CDF, CMS, D0

 0.71 GeV± 0.27 ±173.34 
 syst)± stat ±(value 
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Summary of the LHC findings

The Standard Model in now complete: the last particle - Higgs

boson, predicted by the SM, has been found
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Summary of the LHC findings

The Standard Model in now complete: the last particle - Higgs

boson, predicted by the SM, has been found

No deviations from the SM have been observed (750 diphoton

excess?)

The masses of the top quark and of the Higgs boson, the Nature

has chosen, make the SM a self-consistent effective field theory

all the way up to the Planck scale

114 GeV < mH < 175 GeV
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Behaviour of the scalar self-coupling vacuum lifetime
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Vacuum (meta?)stability
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Important fact: The combination of top-quark and Higgs boson masses

is very close to the stability bound of the SM vacuum∗ (95’), to the

Higgs inflation bound∗∗ (08’), and to asymptotic safety values for MH

and Mt
∗∗∗ (09’):

Fermi Planck

φ

V

Fermi Planck

φ

V

Fermi Planck

φ

V

stability

metastability 
M crit

∗ Froggatt, Nielsen

∗∗ Bezrukov, MS

De Simone, Hertzberg,

Wilczek

∗∗∗ Wetterich, MS
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TEVATRON 2014: mt = 174.34 ± 0.37 ± 0.52 GeV

Absolute stability Metastability
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PDG 2014: mt = 173.34 ± 0.27 ± 0.71 GeV

Absolute stability Metastability
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CMS 2014: mt = 172.38 ± 0.10 ± 0.65 GeV

Absolute stability Metastability
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Buttazzo et al, ’13, ’14

Vacuum is unstable at 2.8σ

Bednyakov et al, ’15

Vacuum is unstable at 1.3σ

Main uncertainty: top Yukawa coupling, relation between the MC mass

and the top Yukawa coupling allows for ±1 GeV in Mtop. Alekhin et al,

Frixione et al.
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Planck results
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The message from Planck: The
Standard ΛCDM model is in a very good
agreement with the data

No primordial non-Gaussianities are observed

One-field inflationary models agree well with Planck

No physics beyond Standard ΛCDM is observed
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Observational evidence for BSM physics

The Universe is flat, homogeneous and isotropic at large scales,

but contains structures such as galaxies at smaller distances.

Cosmological inflation is needed to explain this.
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Observational evidence for BSM physics

The Universe is flat, homogeneous and isotropic at large scales,

but contains structures such as galaxies at smaller distances.

Cosmological inflation is needed to explain this.

The Universe is asymmetric: it contains baryons, but there is no

antimatter in amounts comparable with matter. This cannot be

explained in the SM.

Most of the matter in the universe is dark : no particle physics

candidate in the SM

Neutrino masses and oscillations, absent in the Standard Model

The Universe expansion at present is accelerating. Is this simply

a tiny cosmological constant or something more complicated?
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How to reconcile the evidence for

new physics without spoiling the

success of the Standard Model

and Standard ΛCDM?
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Inflation
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Inflation

Ockham’s razor in action, 3 step logic:
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Inflation

Ockham’s razor in action, 3 step logic:

For inflation we better have scalar field

The Higgs boson was predicted by the SM and finally has been

discovered

Let’s use it for inflation!
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Higgs inflation

near the critical line
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Higgs Inflation, no loops

Higgs field in general must have non-minimal coupling to gravity:

SG =

∫

d4x
√

−g

{

−
M2

P

2
R −

ξh2

2
R

}

Jordan, Feynman, Brans, Dicke,...

Consider large Higgs fields h > MP /
√
ξ, which may have existed in

the early Universe

The Higgs field not only gives particles their masses ∝ h, but also

determines the gravity interaction strength:

Meff
P =

√

M2
P + ξh2 ∝ h

For h > MP√
ξ

(classical) physics is the same (MW /Meff
P does not

depend on h)!

Physical effective potential does not depend on the Higgs field.
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Potential in Einstein frame

0

λM4/ξ2/16

λM4/ξ2/4

U(χ)

0 χ

0

λ v4/4

0 v

Standard Model

χ - canonically normalized scalar field in Einstein frame.
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Potential for the Higgs field may be flat at
large values of h: Linde chaotic inflation
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Potential for the Higgs field may be flat at
large values of h: Linde chaotic inflation

Inflation, Big Bang - all in the framework
of the Standard Model
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Stage 1: Higgs inflation, h > MP√
ξ

, slow roll of the Higgs

field

0

λM4/ξ2/16

λM4/ξ2/4

U(χ)

0 χend χCOBE χ

inflation

Makes the Universe flat, homogeneous and isotropic

Produces fluctuations leading to structure formation: clusters of

galaxies, etc
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Slow roll stage

COBE normalization U/ǫ = (0.0276MP )4 gives

ξ ≃
√

λ

3

NCOBE

0.0272
≃ 47000

√
λ = 47000

mH√
2v

Connection of ξ and the Higgs mass!

Number of e-folds of inflation at the moment hN is N ≃ 6

8

h2

N−h2

end

M2

P
/ξ

Slow roll ends at χend ≃ MP ; and “begins” at χ60 ≃ 5MP

ǫ =
M2

P

2

(

dU/dχ

U

)2

, η = M2
P

d2U/dχ2

U

ns = 1 − 6ǫ + 2η, r = 16ǫ
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CMB parameters - spectrum and tensor

modes, ξ & 1000

ns = 0.97, r = 0.003
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Stage 2: Big Bang, MP

ξ
< h < MP√

ξ
, Higgs field oscillations

0

λM4/ξ2/16

λM4/ξ2/4

U(χ)

0 χend χCOBE χ

R
eh

ea
tin

g

All particles of the Standard Model are produced

Coherent Higgs field disappears

The Universe is heated up to T ∝ MP /ξ ∼ 1014 GeV
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Any theory of inflation is non-renormalisable, as it includes gravity!

How to account for this fact in general, and for the Higgs inflation in

particular? Higher dimensional operators? Radiative corrections?

Hierarchy of approaches:
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operators suppressed by this cutoff.
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theory finite with all constant parts having the same structure as counter-terms.

Bezrukov, Magnin, MS, Sibiryakov
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Any theory of inflation is non-renormalisable, as it includes gravity!

How to account for this fact in general, and for the Higgs inflation in

particular? Higher dimensional operators? Radiative corrections?

Hierarchy of approaches:

(i) Add to the theory all higher-dimensional operators, suppressed by the Planck scale.

This kills all large field inflationary models (not the Higgs inflation, if the Planck

suppressed operators are added in Jordan frame, but also Higgs inflation, if done in the

Einstein frame)

(ii) Self-consistent approach to Higgs inflation: compute the onset of strong coupling Λ

(“UV cutoff”) by considering tree high energy scattering amplitudes Burgess, Lee, Trott ;

Barbon and Espinosa in the Higgs-dependent background Bezrukov, Magnin, M.S.,

Sibiryakov; Ferrara, Kallosh, Linde, A. Marrani, Van Proeyen and add higher-dimensional

operators suppressed by this cutoff.

(iii) The most minimal setup: add to Lagrangian all counter-terms necessary to make the

theory finite with all constant parts having the same structure as counter-terms.

Bezrukov, Magnin, MS, Sibiryakov

Radiative corrections, different approaches: Barvinsky, Kamenshchik, Starobinsky;

Bezrukov, MS; De Simone, Hertzberg, Wilczek; George, Mooij, Postma,...
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Higgs inflation: yt < ycrit

t

The same story as the Higgs

inflation at the tree level.
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Critical Higgs inflation: yt ≈ ycrit

t

Extreme fine tuning of the Higgs and top quark masses
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Bezrukov, MS

For yt very close to ycrit
t : critical Higgs inflation - tensor-to-scalar ratio

can be large, ξ ∼ 10

Behaviour of λ:
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Effective potential

U(χ) ≃
λ(z′)

4ξ2
µ̄4 , z′ =

µ̄

κMP

, µ̄2 = M2

P

(

1 − e
−

2χ
√

6MP

)

The parameter µ that optimises the convergence of the perturbation theory is related to

µ̄ as

µ2 = α2
yt(µ)2

2

µ̄2

ξ(µ)
, α ≃ 0.6

Behaviour of effective potential for λ0 ≃ b/16:

0 1 2 3 4 5

0

1.´10-8

2.´10-8

3.´10-8

4.´10-8

5.´10-8

Schaldming, 21-26 February 2016 – p. 37



The inflationary indexes

r can be large!

see also Hamada, Kawai, Oda and Park

Critical Higgs inflation only works if both Higgs and top quark masses

are close to their experimental values.
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Living beyond the edge: Higgs

inflation and vacuum

metastability, yt > ycrit

t

Schaldming, 21-26 February 2016 – p. 39



Bezrukov, Rubio, MS

Renormalisation of the SM coupling constants at the scale MP /ξ:

“jumps” of λ and yt controlled by UV completion of the SM, which

cannot be found from low-energy observables of the SM

Bezrukov, Magnin, MS., Sibiryakov

λ(MP /ξ) is small due to cancellations between fermionic and bosonic

loops: δλ can be of the order of λ
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Higgs potential

V

χvEW µ0 MP

ξ
MP
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Symmetry restoration
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Reheating temperature TR ≃ 2 × 1014 GeV > T+ ≃ 7 × 1013 GeV,

Tc = 6 × 1013 GeV
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(Meta) stability of false vacuum

Computation for SM: Espinosa, Giudice, Riotto
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Predictions for critical indexes ns and r are the same as for

non-crtitical Higgs inflation

ns = 0.97, r = 0.003

Critical Higgs inflation at yt > ycrit

t ?

Critical Higgs inflation : small ξ ∼ 10 - the depth of the large Higgs

value vacuum is comparable with the energy stored in the Higgs after

inflation: the required reheating temperature is too large, T+ ≃ 1016

GeV and cannot be achieved.
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Conclusions, Lecture 2

Higgs boson of the Standard Model can make the universe flat,

homogeneous and isotropic, and can lead to primordial

perturbations needed for structure formation

The Higgs inflation can take place both for absolutely stable and

metastable vacuum, with universal predictions

ns = 0.97, r = 0.003 for a wide range of parameters

For critical Higgs inflation corresponding to yt ≈ ycrit
t ns and r

can be substantially different from these values
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