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Part I
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CFT in a non-lagrangian approach

Operators in CFT

Operators in CFT O(`,¯̀)
∆ are labeled (follows form group theory) by their

spin and non-perturbative dimension. Primary Operators - operators with
the lowest dimension in the infinite series of operators. The scaling
dimension:

O(`,¯̀)
∆ (λx) = λ−∆O(`,¯̀)

∆ (x)

O(`,¯̀)
∆ (x , s, s̄) ≡ sα1 . . . sα` s̄β̇1

. . . s̄β̇ ¯̀
O∆(x)

β̇1...β̇ ¯̀
α1...α` ,

where sα1 and s̄β̇ ¯̀
are just some constant complex vectors. (The trick of

removing explicit indices is called index-free formalism)

The observables of the theory

〈O(`1, ¯̀
1)

∆1
(x1, s1, s̄1) . . .O(`n, ¯̀n)

∆n
(xn, sn, s̄n)〉.
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Three-point functions

For simplicity we will label the operators just by one index

Oi ≡ O
(`i , ¯̀

i )
∆i

(xi , si , s̄i )

Three-point function

〈OiOjOk〉 = K3

N3∑
a=1

λaijkτ
a
3 ,

K3 are ”kinematic factors” which account for the fields scaling,
τ3 are tensors which account for the fields spin structure,
λa are free parameters characterizing the dynamics.

Three-point functions have been computed for trace-less symmetric operators
(` = ¯̀) by [Costa, Penedones, Poland, Rychkov ’11] and for arbitrary spins by
[Elkhidir, DK, Serone ’14].
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Defining a CFT

CFT is defined by a set of Primary Relevant Operators Oi and the CFT
data (the set of parameters {∆i , λijk}) which describes the dynamics.

Conformal Bootstrap

Is the method of constraining the CFT data using the Conformal
Symmetry only. The constraints arise from the the explicit expressions of
4-point functions.
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Success: the 3D Ising model

The Ising model can be defined as a CFT with 2 relevant scalar operators
σ and ε which are oppositely ”charged” under the Z2 symmetry.
Numerically it was solved by [El-Showk, Paulos, Poland, Rychkov,
Simmons-Duffin, Vichi ’12 and ’14] and improved in consequent papers.
The plot was taken from [Simmons-Duffin ’15].

Obtained by ”bootstrapping” the correlators : 〈σσσσ〉, 〈εεεε〉 and 〈σσεε〉.
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Applications to phenomenology

〈ψαψ̄α̇ψβψ̄β̇〉

In the composite higgs models one can construct ”hyper-mesons”
(composite higgses) M ≡ ψψ̄ and ”hyper-baryons” (top-partners)
B ≡ ψψψ. One is interested to know the relation between ∆M and ∆B .

To put constraints on the ”central charges”: a and c

〈TµνTρσTκηTλω〉

QCD conformal window

If one ever attempts to use the bootstrap for studying the fixed point of
massless QCD in the conformal window, one needs to go to non-zero spin.
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Computing 4-point functions
One can compute a 4-point function using the OPE:

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =∑
O

∫
D4x0〈O1(x1)O2(x2)O(x0)〉〈Õ(x0)O3(x3)O4(x4)〉

∣∣∣
M

=

∑
O

N12O
3∑
i=1

N34O
3∑
j=1

λ12O
i λ34O

j W ij

The fundamental object W ij is called conformal partial wave. For
trace-less symmetric operators the author[Costa, Penedones, Poland,
Rychkov ’11] found a way to write

W ij = DijWseed .

In [Echeverri, Elkhidir, DK, Serone ’15] it was generalized to arbitrary spin.
One can see a tremendous simplification just by looking at these numbers

N
spin

1
2

4 = 6, Nspin 1
4 = 70, Nspin 2

4 = 1107.
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Seed Conformal Blocks

The seed conformal partial waves are labeled by a non-negative
integer p:

W
(p)
seed = K4

p∑
e=0

G
(p)
e (u, v)Ie1I

p−e
2 ,

where the objects G
(p)
e (u, v) are called (seed) conformal blocks.
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How many W
(p)
seed (G

(p)
e ) do we need to compute?

For 4-φ correlator: we need to know p = 0

For 4-ψ correlator: we need to know p = 0, 2

For 4-Jµ correlator: we need to know p = 0, 2, 4

For 4-Tµν correlator: we need to know p = 0, 2, 4, 6, 8

The case p = 0 was computed and given in a remarkably simple form by
[Francis Dolan and Hugh Osborn ’00], it was further investigated in the
consequent papers [Dolan and Osborn ’04] and [Dolan and Osborn ’11].

In the paper [Echeverri, Elkhidir, DK, Serone ’16] it was obtained a

general expression for W
(p)
seed (G

(p)
e ):

G
(p)
e (z , z̄) =

(
zz̄

z − z̄

)2p+1∑
m,n

cem,n

(
k

(ae ,be ;ce)
ρ1+m (z)k

(ae ,be ;ce)
ρ2+n (z̄)− (z ↔ z̄)

)
.
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Conclusions

I argued that there is a powerful non-lagrangian method of defining
and studding CFTs called conformal bootstrap.

Conformal bootstrap is based on the knowledge of explicit expressions
of 4-point functions which are given by conformal partial waves or
conformal blocks.

I argued that conformal partial waves (conformal blocks) for
operators with spin are very much needed and briefly described the
current status of this problem.
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Thank you!
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