Tree-level Unitarity and Renormalizability in Lifshitz Scalar Theory

based on PRD91(2015)12,125007 PTEP2016(2016)1,013B08

Tomotaka Kitamura

with Takeo Inami Toshiaki Fujimori Keisuke Izumi

Waseda University

National Taiwan University Keio University Barcelona University

Study two quantum properties

1. Renormalizability

2. Unitarity

in Lifshitz scalar theory

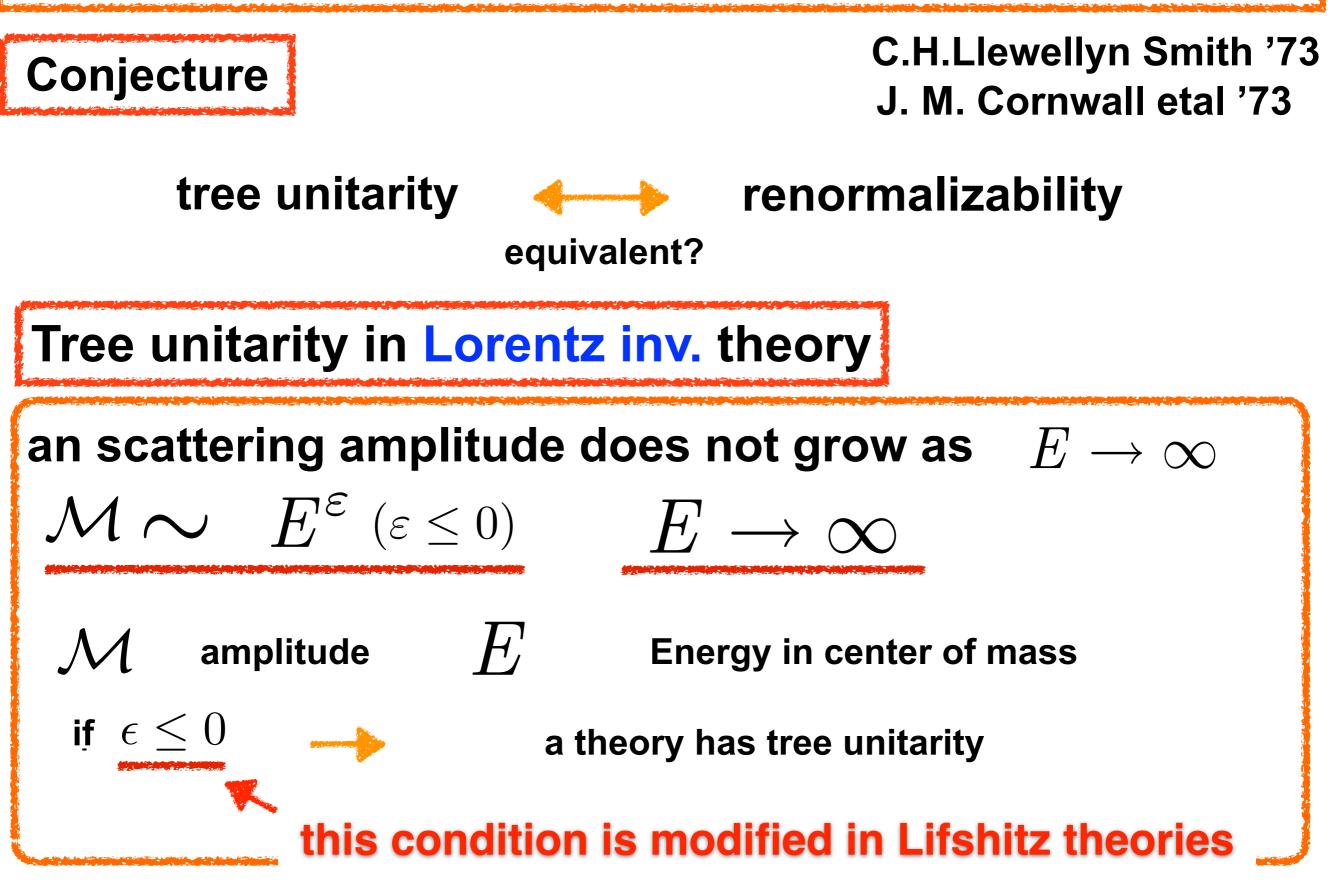
Results

Obtained **1. Modified renormalizability conditions 2. Modified tree-level unitarity conditions**

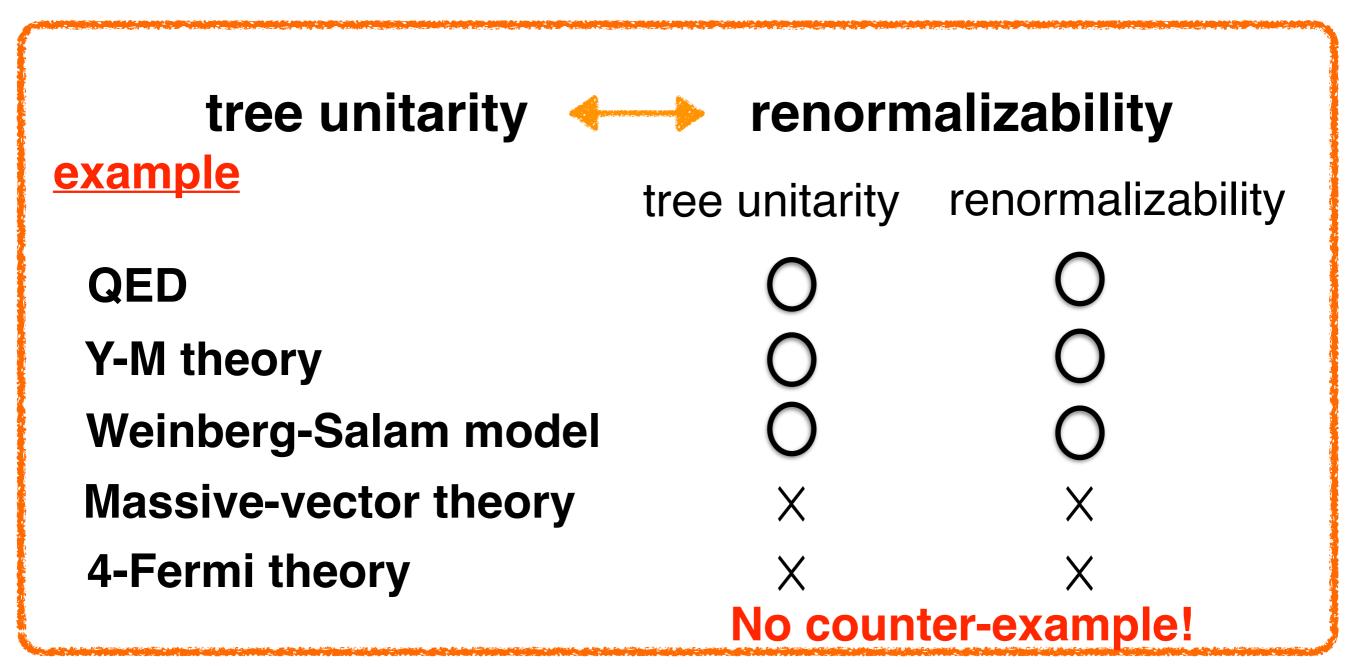
The renormalizability conditions are <u>equivalent</u> to the tree-level unitairty conditions

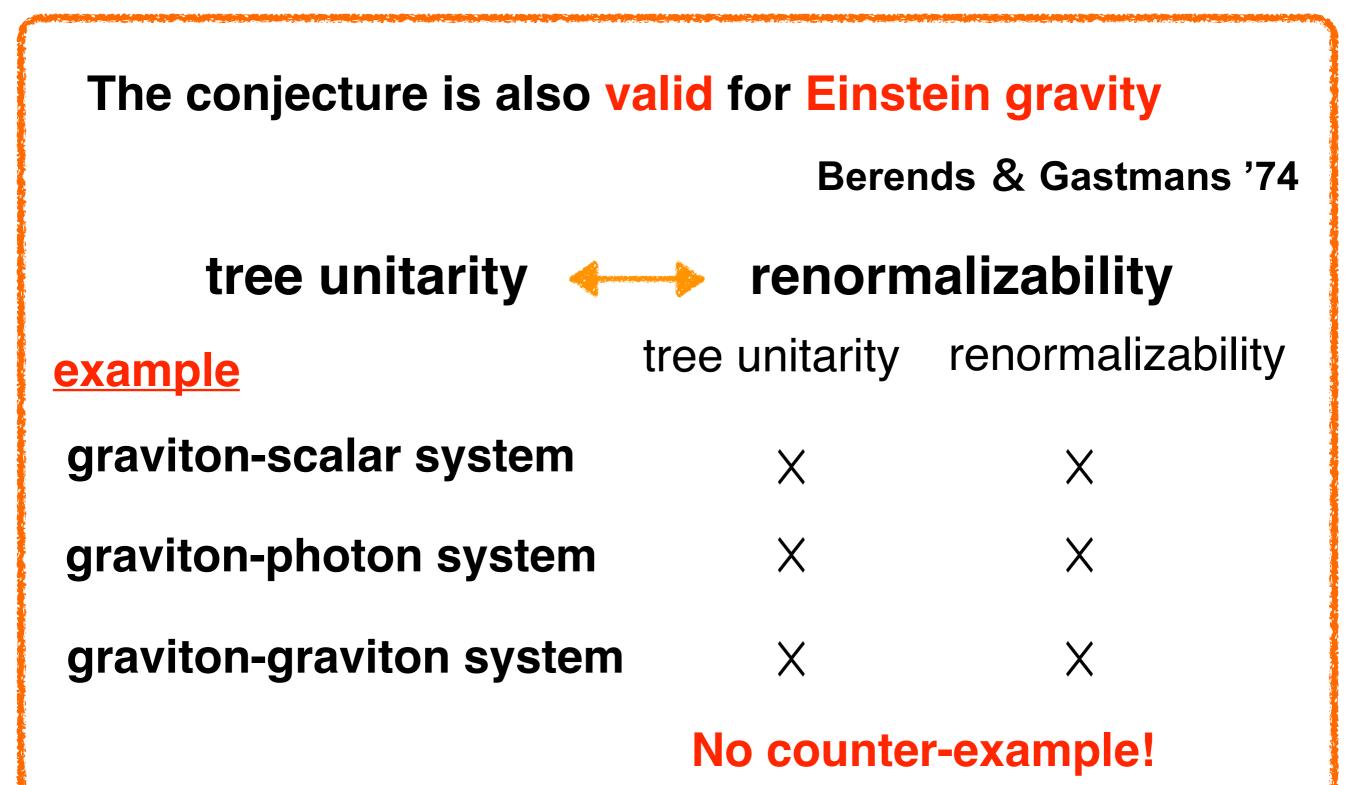
- 2. Lifshitz scalar theory
- 3. Renormalizability
- 4. Tree-level Unitarity

5.Outlook



No counterexample is known





Equivalence between renormalizability and tree unitarity has been studied within framework Lorentz invariant field theory

It is worth checking whether the equivalence also holds true for more generic field theory

Lifshitz-type field theory, Non-Commutative field theory.....

In our work, we have studied Lifshitz-type field theory in which Lorentz symmetry is violated

- The equivalence is originated from quantum theory?
- Tree unitarity can be tool for checking the renormalizability of less symmetric field theory instead of loop calculation?

Horava-Lifshitz gravity

2. Lifshitz Scalar Theory

Lifshitz Scalar Theory

Lifshitz scaling

$$[x] = -1$$
 $[t] = -z$ in mass dim

- $\vec{x} \mapsto b\vec{x} : b$ arbitrary number
- $t \mapsto b^z t$: \mathcal{Z} dynamical critical exponent

 \boldsymbol{z} :degree of anisotropy between space and time

$$\begin{split} S_{LS} &= S_{free} + S_{int} \\ S &= \int dt d^d x \bigg[\frac{1}{2} \phi \Big\{ \partial_t^2 - f(-\Delta) \Big\} \phi + \mathcal{L}_{int} \bigg] \qquad \Delta := \partial^i \partial_i \\ f(-\Delta) &= (-\Delta)^z + \cdots \qquad \qquad \frac{\text{dispersion relation}}{E = \sqrt{f(p^2)}} \end{split}$$

allow higher spatial derivative

$$\begin{array}{lll} z=3 \\ \text{improve UV behavior} \end{array} & \sim \frac{1}{E^2-p^6} & z=1 & \rightarrow & \text{isotropic} \\ z\neq 1 & \rightarrow & \text{Lorenz symmetry} \end{array}$$

2. Lifshitz Scalar Theory

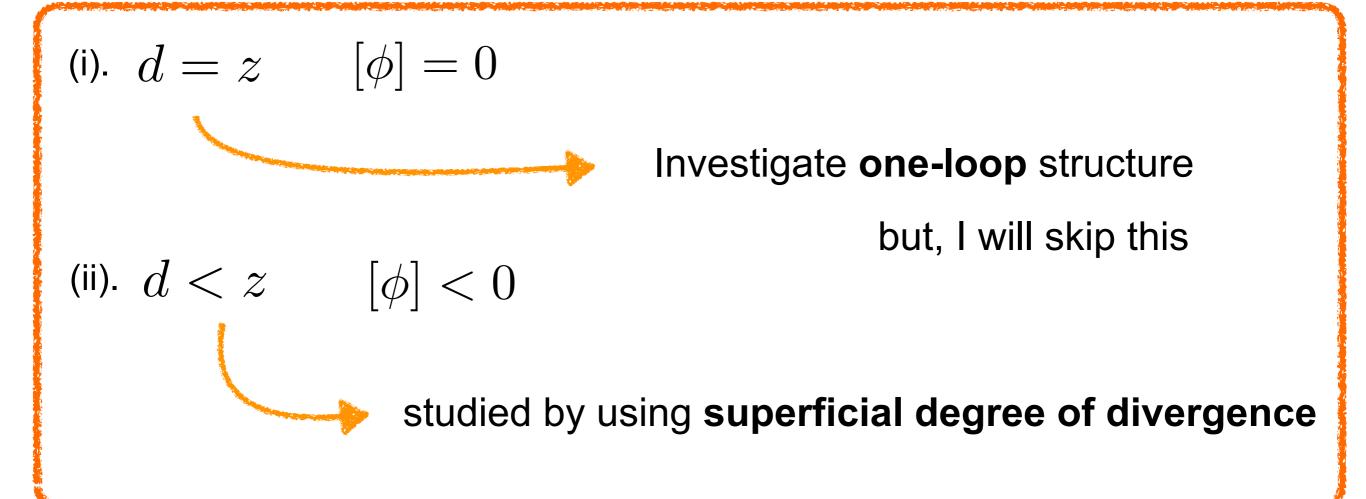
The dimension of the scalar field is depend on z and d

$$\begin{split} [\phi] &= \frac{d-z}{2} & \text{(i). } d = z & [\phi] = 0 \\ (\text{ii). } d < z & [\phi] < 0 \\ (\text{iii). } d > z & [\phi] > 0 & \text{Coupling constant} \\ [\lambda] &= 0 \end{split}$$

In the case of (i). and (ii).,

conventional Power-Counting Renormalizable (PCR) condition is **not enough** to check the renormalizability of the Lifshitz scalar (-type) field theory We show that

To Judge Renormalizability of Lifshitz-type theory needs modified PCR condition



Conventional PCR

second order action

^

$$S_2 = \int dt d^d x \phi (-\partial_t^2 - (-\Delta)^z) \phi$$

$$[p] = 1, \quad [E] = z, \quad [\phi] = (d-z)/2$$

 $[dt] \pm d[dx]$

$$[dt] + d[dx] + 2[\partial_t] + 2[\phi] = 0$$

conventional PCR condition

interaction term

 $S_{int} = \lambda \int dt d^d x \partial_x^a \phi^b$ $\begin{bmatrix} \lambda \end{bmatrix} = -[dt] - d[dx] - a[\partial_x] - b[\phi]$ $= z + d - a - b(d - z)/2 \ge 0$

$$[x] = -1$$
 $[t] = -z$
 $[p] = 1$ $[E] = z$

Nonrenormalizable term with conventional PCR

Example d=3, z=5 $S_2 = \int dt d^3 x \phi (-\partial_t^2 - (-\Delta)^5) \phi \qquad [\phi] = -1$ $|\lambda| = 0$ (satisfies the conventional PCR) $S_{int} = \lambda \int dt d^3x \ \phi^2 (\Delta^3 \phi)^2$ $[\lambda] = -[dt] - 3[dx] - 12[\partial_x] - 4[\phi] = 0$ $\Delta^{3}\phi$ -5 -1 1 _1 $\Delta^3 \phi$ 1-loop 2n-point function $\Delta^{3}\phi$ $\int d\omega d^3 k (\frac{1}{\omega^3 - n^{10}})^n (p^{12})^n \sim \Lambda^{8+2n}$ For any n, this diverges

infinite number of counter terms are required

 $\Delta^3 \phi$

13

Extended PCR

Check the divergence structure of the loop diagram

Only internal lines are important

$$\begin{split} S_{int} &= \lambda \int dt d^3x \; \phi^2 (\triangle^3 \phi)^2 \\ \hline \mathbf{-8} \quad \text{rerated to loop} \\ \text{with d=3, z=5, if dimension of operator became 8} \\ \text{it is marginal} \\ \text{However, } (\triangle^3 \phi)^2 \text{, which is the part contributes to loop calculation} \end{split}$$

Therefore, this interaction term lead to **non-renormalizable**

is dimension 10

Any part must be less than dimension 8

inverse of $\left[dtd^3x\right]$

Extended PCR

From the following interaction term

$$S_{int} = \lambda \int dt d^3x \ \phi^2(\triangle^3 \phi)^2 - [dt d^3x] > (a_3 + [\phi] + a_4 + [\phi])$$

we can describe the Extended PCR condition for quartic interaction
1. whole
$$S_4 = \int dt d^dx \ (\partial_x^{a_1} \phi) \ (\partial_x^{a_2} \phi) \ (\partial_x^{a_3} \phi) \ (\partial_x^{a_4} \phi)$$

2. a portion (i)
3. a portion (ii)
a_1 \le a_2 \le a_3 \le a_4
1. whole:
$$z + d \ge a_1 + a_2 + a_3 + a_4 + 4[\phi] \rightarrow a_1 + a_2 + a_3 + a_4 \le 3z - d$$

2. a portion (i):
$$z + d > a_2 + a_3 + a_4 + 3[\phi] \rightarrow a_2 + a_3 + a_4 \le (5z - d - 1)/2$$

3. a portion (ii):
$$z + d > a_3 + a_4 + 2[\phi] \rightarrow a_3 + a_4 \le 2z - 1$$

Extended PCR

Extended PCR

$$S_3 = \int dt d^d x \left(\partial_x^{a_1} \phi\right) \left(\partial_x^{a_2} \phi\right) \left(\partial_x^{a_3} \phi\right), \quad a_1 \le a_2 \le a_3$$

we can describe the Extended PCR condition for cubic interaction

Extended PCR

$$a_1 + a_2 + a_3 \le (5z - d)/2$$

 $a_2 + a_3 \le 2z - 1$

 a_1, a_2, a_3, z integers

4. Tree-level Unitarity

4. Tree-level unitarity

Optical theorem originated from unitarity of S-matrix

- (a) Unitarity of S-matrix $S^{\dagger}S = 1$
- (b) Optical theorem

$$\operatorname{Im}\mathcal{M}_{\mathrm{nn}} = -\pi \Sigma_{\mathrm{n'}} \mid \mathcal{M}_{\mathrm{n'n}} \mid^{2}$$
cross section

Unitarity bound is obtained from optical theorem

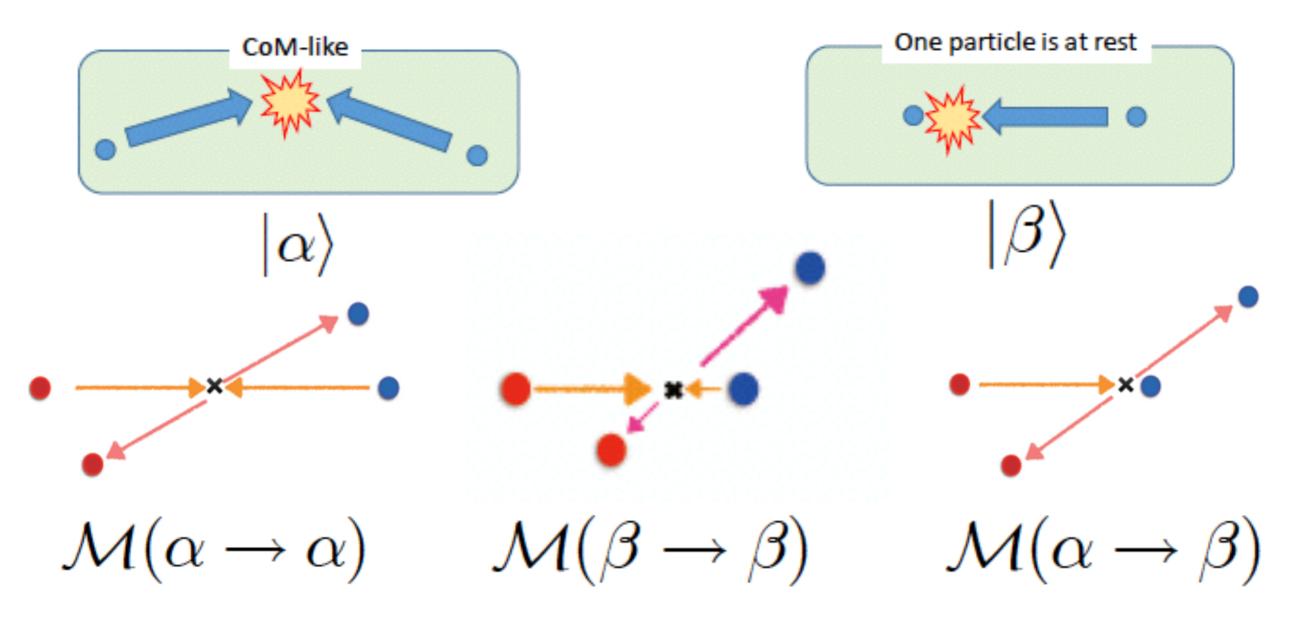
$$|\mathcal{M}_{nn}| \ge |\operatorname{Im}\mathcal{M}_{nn}| \ge \pi |\mathcal{M}_{nn}|^2 \to |\mathcal{M}_{nn}| \le \frac{1}{\pi}$$

Scattering amplitudes is bounded by using optical theorem originated unitarity condition of S-matrix

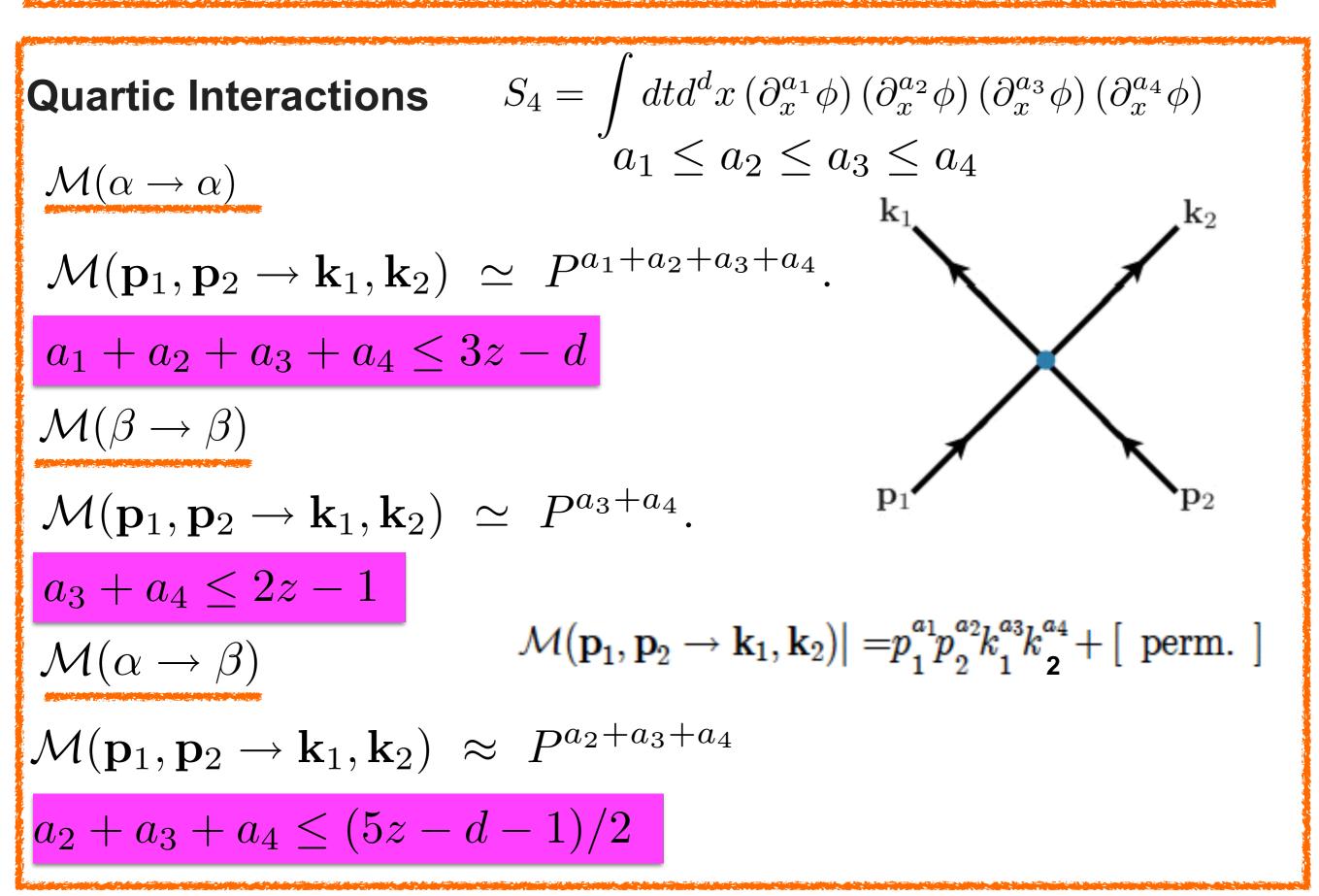
4. Tree-level unitarity

Two scattering states are considered in Lifshitz-type theory

All scattering process are independent due to broken Lorentz symmetry Need to consider even laboratory-like system



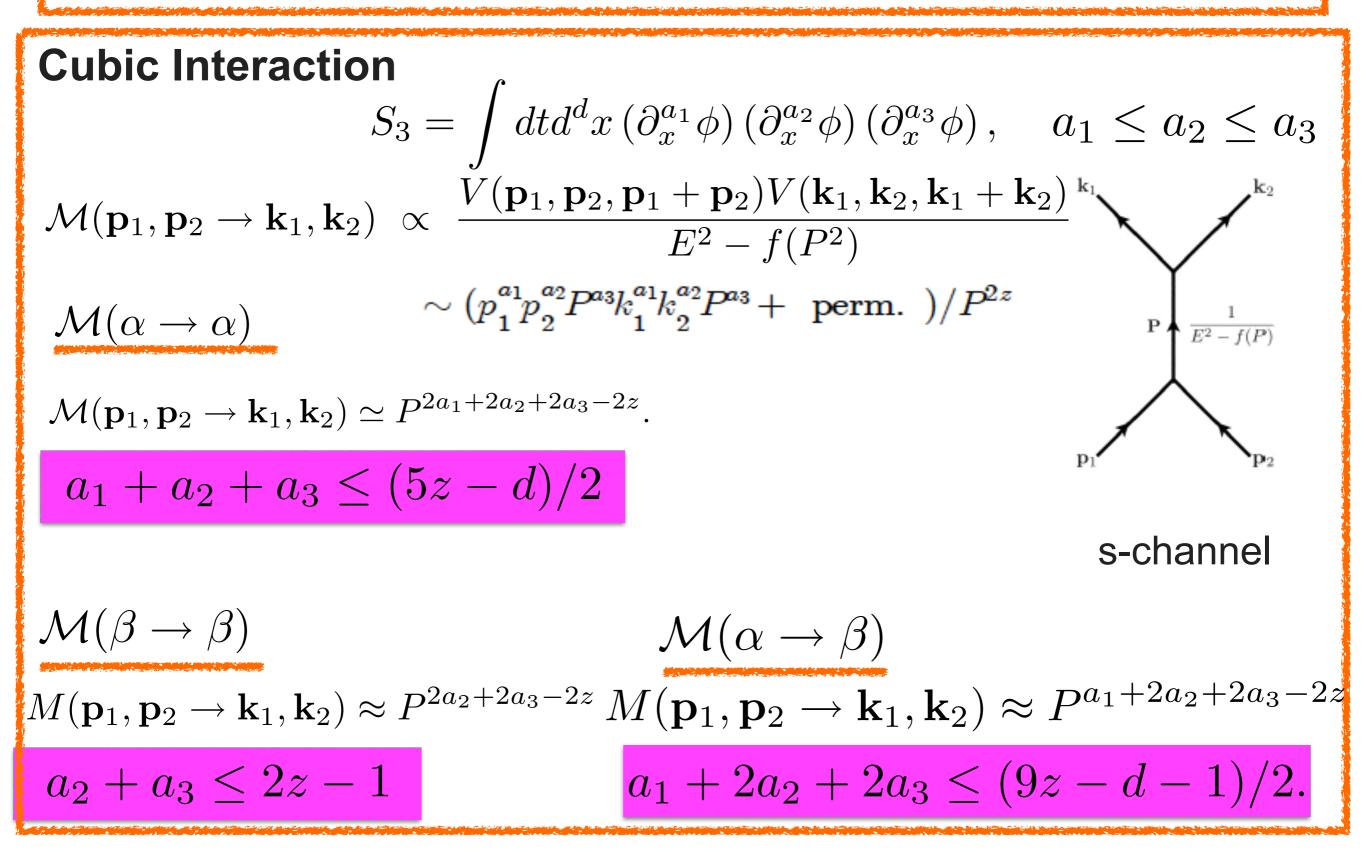
4. Tree-level unitarity $([\lambda] = 0, [\phi] = 0)$



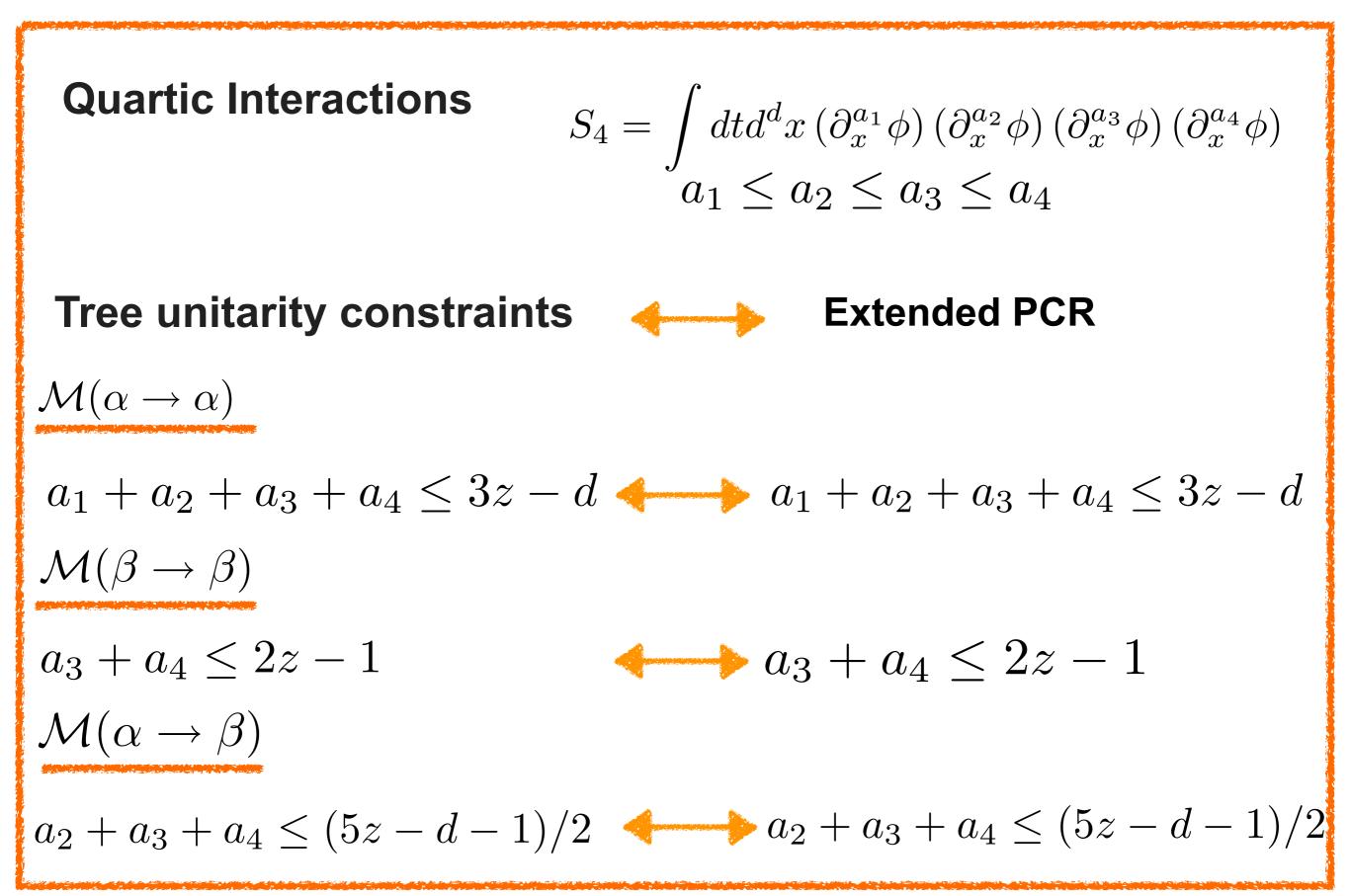
4. Tree-level unitarity $([\lambda] = 0, [\phi] = 0)$

Examples of quartic interaction $z = d = 3_{k_{L}}$ $S_4 = \int dt d^d x \left(\partial_x^{a_1} \phi\right) \left(\partial_x^{a_2} \phi\right) \left(\partial_x^{a_3} \phi\right) \left(\partial_x^{a_4} \phi\right)$ $a_1 \le a_2 \le a_3 \le a_4$ $\mathcal{M}(\alpha \to \alpha)$ \mathbf{p}_1 $\mathcal{M}(\mathbf{p}_1,\mathbf{p}_2\to\mathbf{k}_1,\mathbf{k}_2) \simeq P^{a_1+a_2+a_3+a_4}.$ examples $a_1 = a_2 = a_3 = 0, a_4 = 6$ $a_1 + a_2 + a_3 + a_4 \le 6 \ (\le 3z - d)$ $\phi^3(\triangle^3\phi)$ $\mathcal{M}(\beta \to \beta)$ more strict $\mathcal{M}(\mathbf{p}_1,\mathbf{p}_2\to\mathbf{k}_1,\mathbf{k}_2) \simeq P^{a_3+a_4}.$ $a_1 = a_2 = a_3 = 0, a_4 = 6$ $\times \phi^3(\triangle^3 \phi)$ $a_3 + a_4 \le 5 \quad (\le 2z - 1)$

4. Tree-level unitarity $([\lambda] = 0, [\phi] = 0)$



4. Tree-level unitarity



4. Tree-level unitarity

Cubic Interaction

$$S_3 = \int dt d^d x \left(\partial_x^{a_1} \phi\right) \left(\partial_x^{a_2} \phi\right) \left(\partial_x^{a_3} \phi\right), \qquad a_1 \le a_2 \le a_3$$

Tree unitarity constraints

 Extended PCR

$$\begin{split} \mathcal{M}(\alpha \to \alpha) \\ a_1 + a_2 + a_3 &\leq (5z - d)/2 & \longleftrightarrow a_1 + a_2 + a_3 \leq (5z - d)/2 \\ \mathcal{M}(\beta \to \beta) \\ a_2 + a_3 &\leq 2z - 1 & \longleftrightarrow a_2 + a_3 \leq 2z - 1 \\ \mathcal{M}(\alpha \to \beta) \\ a_1 + 2a_2 + 2a_3 \leq (9z - d - 1)/2. \end{split}$$
no additional condition

Outlook

Tree unitarity conditions and Extended PCR condition are identical in Lifshitz (non-relativistic) field theory

It inferred that the equivalence between both the two hold true for **more large class of field theory**

Thus,

the results of our work can be applicable to study in various field theory, such as **Horava-Lifshitz gravity**, **non-commutative field theory**...

Outlook

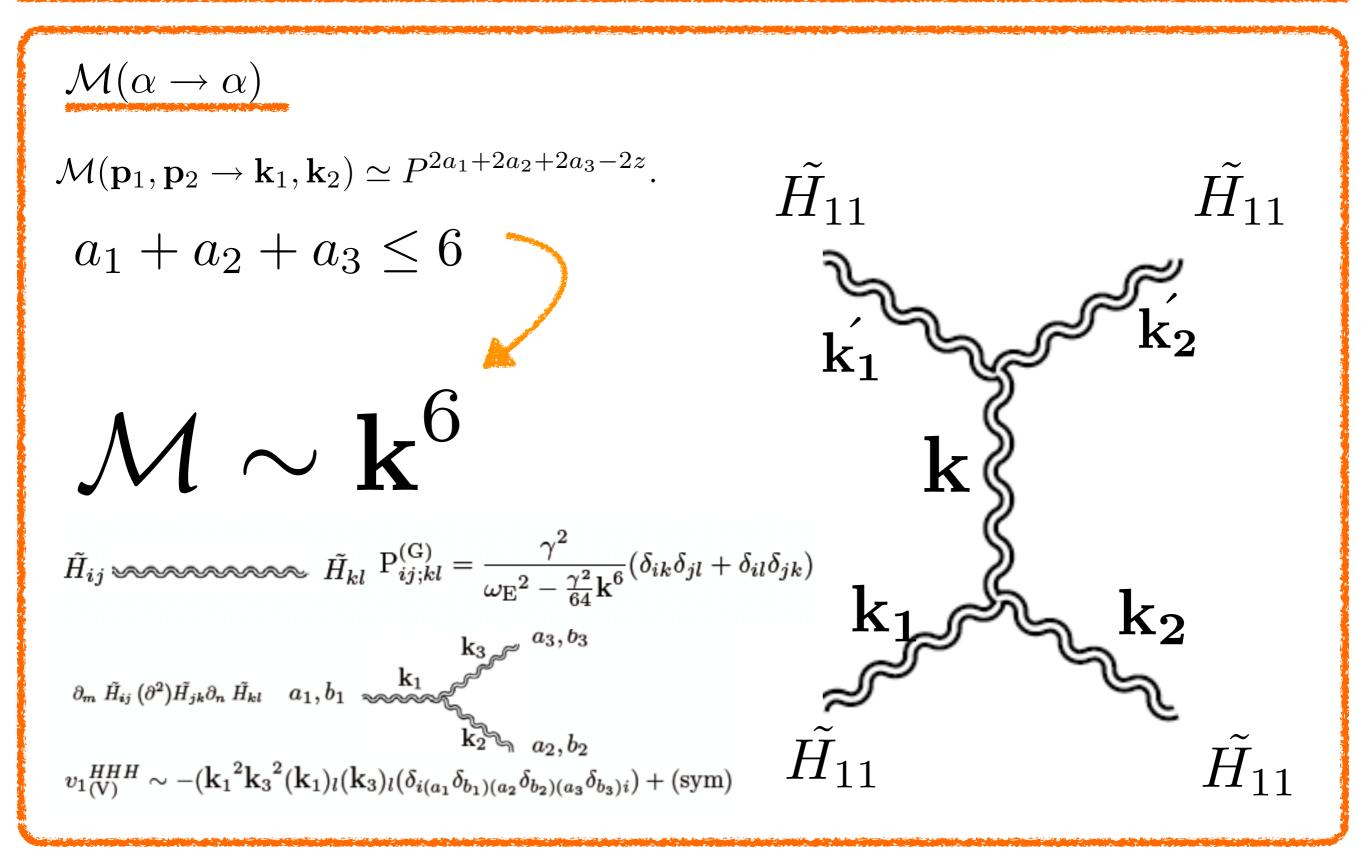
 Lifshitz scalar (LS) theory is renormalizable if LS theory is invariant under certain symmetry such as a shift symmetry allow finite counterterms

 tree unitarity is useful to study in proof of the renormalizability even in Lifshitz-type field theory

 Horava-Lifshitz gravity is a power-counting renormalizable gravity theory with foliation-preserving diffeomorphisms which is more strict than shift symmetry

HL gravity is expected to be a renormalizable gravity theory

Outlook



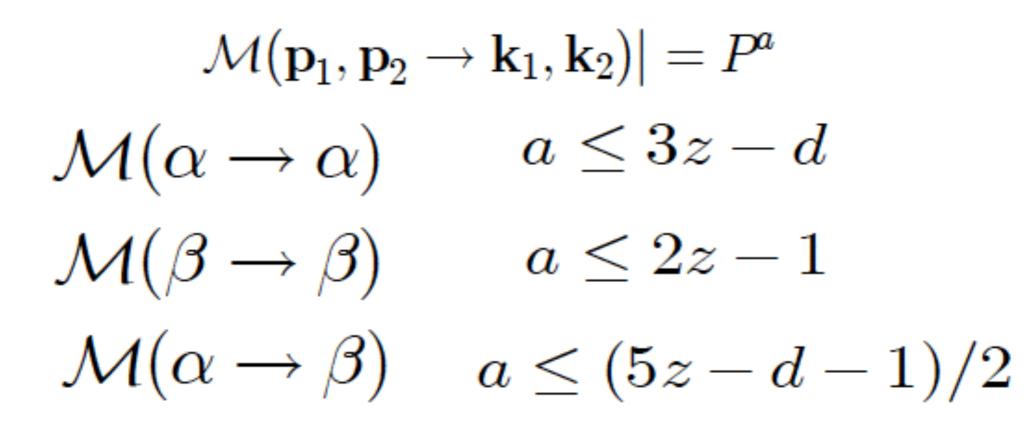
Summary

- 1. Investigated the renoralizability of Lifshitz scalar theory
 - 1-1. formulated Extended PCR condition
- 2. Investigated the unitarity of Lifshitz scalar theory
 - 2-1. derived the tree-unitarity conditions for the scattering amplitudes of Lifshitz scalar theory
 - 2-2. constraint on the quartic and cubic interaction terms from the tree-unitarity conditions

Equivalence between tree unitarity and renormalizability hold true for Lifshitz (non-relativistic) field theory!!

Thank you!!

Unitarity bound for scattering amplitude



(i). $d = z |\phi| = 0$

z=3 (1+3)dim

 $\mathcal{L}_{LS} = \mathcal{L}_{free} + \mathcal{L}_{int} \qquad \qquad \mathcal{L}_{free} = \frac{1}{2}\dot{\phi}^2 + \frac{1}{2}\phi\Delta^3\phi$ $[dx] = -1 \quad [dt] = -3 \quad \longrightarrow \quad [\phi] = 0$

marginal interaction terms z=3 marginal \rightarrow up to 6th order ∂_i

 $(\triangle \phi)^3, \phi^2(\triangle \phi)^3, etc$ $(\triangle^3 \phi)\phi^n$ lead to non-renormalizable?

(i). d = z

with shift symmetry ($\phi
ightarrow \phi + c$) $(\bigtriangleup \phi)^3, (\bigtriangleup^2 \phi) (\partial_i \phi)^2, \cdots$ without shift symmetry

$$\phi^2(\triangle^3\phi), \phi^2(\partial_i\phi)(\partial_i\triangle^2\phi), \cdots$$

(i). d = z

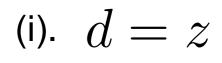
renormalizable

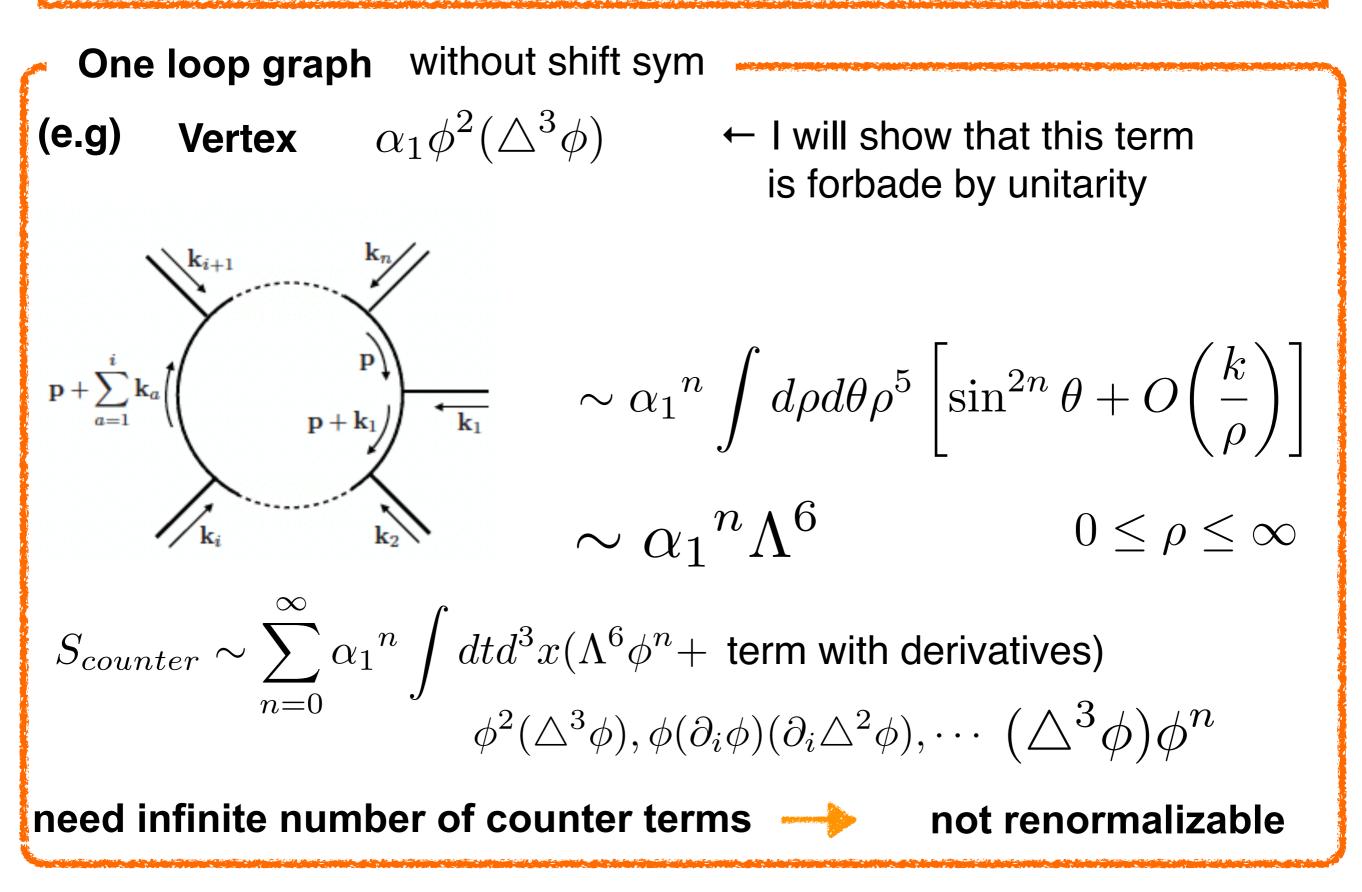
• One loop graph with shift symmetric case (e.g) Vertex $lpha_4 (riangle^2 \phi)^2 (\partial_i \phi)^2$

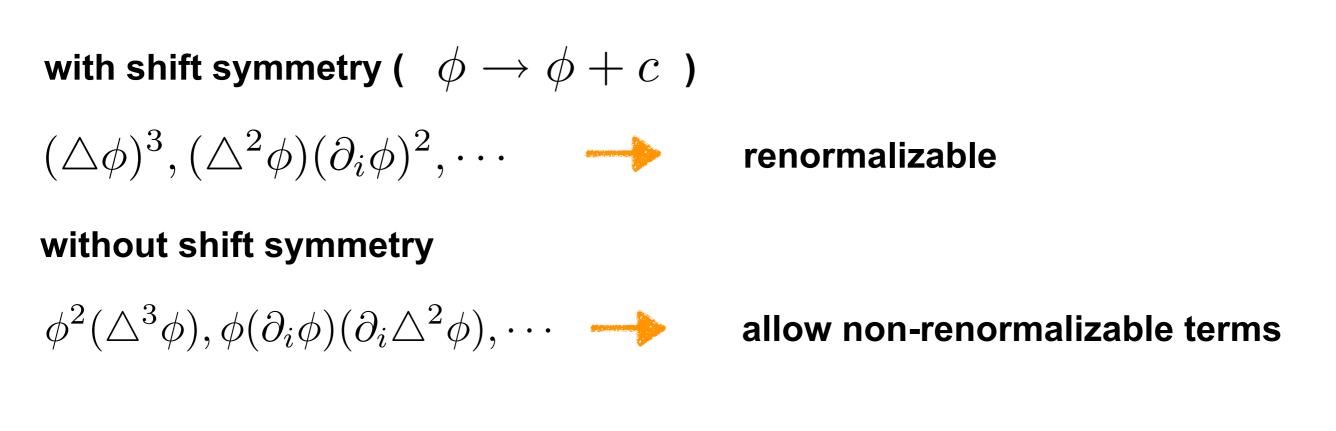


if n > 6, no divergence even if $n \le 6$, there are divergence

but we can renormalize by using counter term







 Lifshitz scalar (LS) theory is a power-counting renormalizable, but LS theory needs certain symmetry to be described finite number of counter terms

Example of the correspondence in the case with/without shift symmetry

	with shift sym	without shift sym
One-loop		×
Tree unitarity	Ó	(Lab-like system)

Equivalence between tree unitarity and renormalizability hold true for Lifshitz (non-relativistic) field theory!!

Unitarity Bound (general discussion)

Unitarity

$$SS^{\dagger} = 1 \qquad S = 1 + iT \qquad -i(T - T^{\dagger}) = TT^{\dagger}$$
Scattering amplitude $\mathcal{M}(i \to f)$
 $\langle f|T|i \rangle = \delta(E_i - E_f)\delta^d(\mathbf{p}_i - \mathbf{p}_f)\mathcal{M}(i \to f)$
Orthonomal basis $|X\rangle \qquad \sum_X |X\rangle\langle X| = 1$
 $-i[\mathcal{M}(i \to f) - \mathcal{M}(f \to i)^*]$
 $= \sum_X \delta(E - E_X)\delta^d(\mathbf{p} - \mathbf{p}_X)\mathcal{M}(i \to X)\mathcal{M}(f \to X)^*$
 $i = f$
2 Im $\mathcal{M}(i \to i) = \sum_X \delta(E - E_X)\delta^d(\mathbf{p} - \mathbf{p}_X)|\mathcal{M}(i \to X)|^2$

Unitarity bound (perturbative) Normalized n-particle state $|\mathbf{p}_1 \dots \mathbf{p}_n\rangle$ $\int \prod_{j=1}^{n} \frac{d^{d_{p_{i}}}}{2E_{p_{i}}} |\mathbf{p}_{1} \dots \mathbf{p}_{n}\rangle \langle \mathbf{p}_{1} \dots \mathbf{p}_{n} | = 1$ Normalized state with discrete parameter l Orthonormal function constant E and P $h_l(\mathbf{p}_i)$ $|E, \mathbf{P}, l\rangle = \int d\Pi_n h_l(\mathbf{p}_i) |\mathbf{p}_1 \dots \mathbf{p}_n\rangle$ $d\Pi_n := \prod_{i=1}^n \frac{d^d p_i}{2E_i} \delta(E_1 + \ldots + E_n - E) \delta^d(\mathbf{p}_1 + \ldots + \mathbf{p}_n - \mathbf{P})$ Scattering amplitude on constant E and P sub-space $\mathcal{M}(E, \mathbf{P}; l \to l')$ $\langle E, \mathbf{P}, l | T | E', \mathbf{P}', l' \rangle = \delta(E - E') \delta^d(\mathbf{P} - \mathbf{P}') \mathcal{M}(E, \mathbf{P}; l \to l')$

Unitarity bound (*l*-basis) Im $\mathcal{M}(i \to i) = \sum_{X} \delta(E - E_X) \delta^d(\mathbf{p} - \mathbf{p}_X) |\mathcal{M}(i \to X)|^2$ $\langle E, \mathbf{P}, l | T | E', \mathbf{P}', l' \rangle = \delta(E - E') \delta^d(\mathbf{P} - \mathbf{P}') \mathcal{M}(E, \mathbf{P}; l \to l')$ $| \text{ Im } \mathcal{M}(E, \mathbf{P}; l \to l) | = \sum_{l'} |\mathcal{M}(E, \mathbf{P}; l \to l')|^2$ $||\mathcal{M}(E, \mathbf{P}; l \to l)| = |\mathcal{M}(E, \mathbf{P}; l \to l')|^2$

 $\begin{aligned} l' &= l \\ & |\mathcal{M}(E,\mathbf{P};l \to l) \geq |\mathcal{M}(E,\mathbf{P};l \to l)|^2 \\ & \implies \quad |\mathcal{M}(E,\mathbf{P};l \to l)| \leq const. \end{aligned}$

Unitarity bound (1-basis) Im $\mathcal{M}(i \to i) = \sum_X \delta(E - E_X) \delta^d(\mathbf{p} - \mathbf{p}_X) |\mathcal{M}(i \to X)|^2$ $(E, \mathbf{P}, l|T|E', \mathbf{P}', l') = \delta(E - E')\delta^d(\mathbf{P} - \mathbf{P}')\mathcal{M}(E, \mathbf{P}; l \to l')$ Im $\mathcal{M}(E, \mathbf{P}; l \to l) = \sum_{l'} |\mathcal{M}(E, \mathbf{P}; l \to l')|^2$ IΙΛ VII $|\mathcal{M}(E,\mathbf{P};l\to l)| \qquad |\mathcal{M}(E,\mathbf{P};l\to l')|^2$ IΛ const. $|\mathcal{M}(E,\mathbf{P};l \to l) \ge |\mathcal{M}(E,\mathbf{P};l \to l)|^2$ l' = l $|\mathcal{M}(E,\mathbf{P};l\to l)| \leq const.$

Unitarity bound (*l*-basis) Im $\mathcal{M}(i \to i) = \sum_{X} \delta(E - E_X) \delta^d(\mathbf{p} - \mathbf{p}_X) |\mathcal{M}(i \to X)|^2$ $\langle E, \mathbf{P}, l | T | E', \mathbf{P}', l' \rangle = \delta(E - E') \delta^d(\mathbf{P} - \mathbf{P}') \mathcal{M}(E, \mathbf{P}; l \to l')$ $|\operatorname{Im} \mathcal{M}(E, \mathbf{P}; l \to l)| = \sum_{l'} |\mathcal{M}(E, \mathbf{P}; l \to l')|^2$ II۸ VII $|\mathcal{M}(E, \mathbf{P}; l \to l)|$ $|\mathcal{M}(E, \mathbf{P}; l \to l')|^2$ II A const. $|\mathcal{M}(E, \mathbf{P}; l \to l')| \leq const.$ **Unitarity Bound**

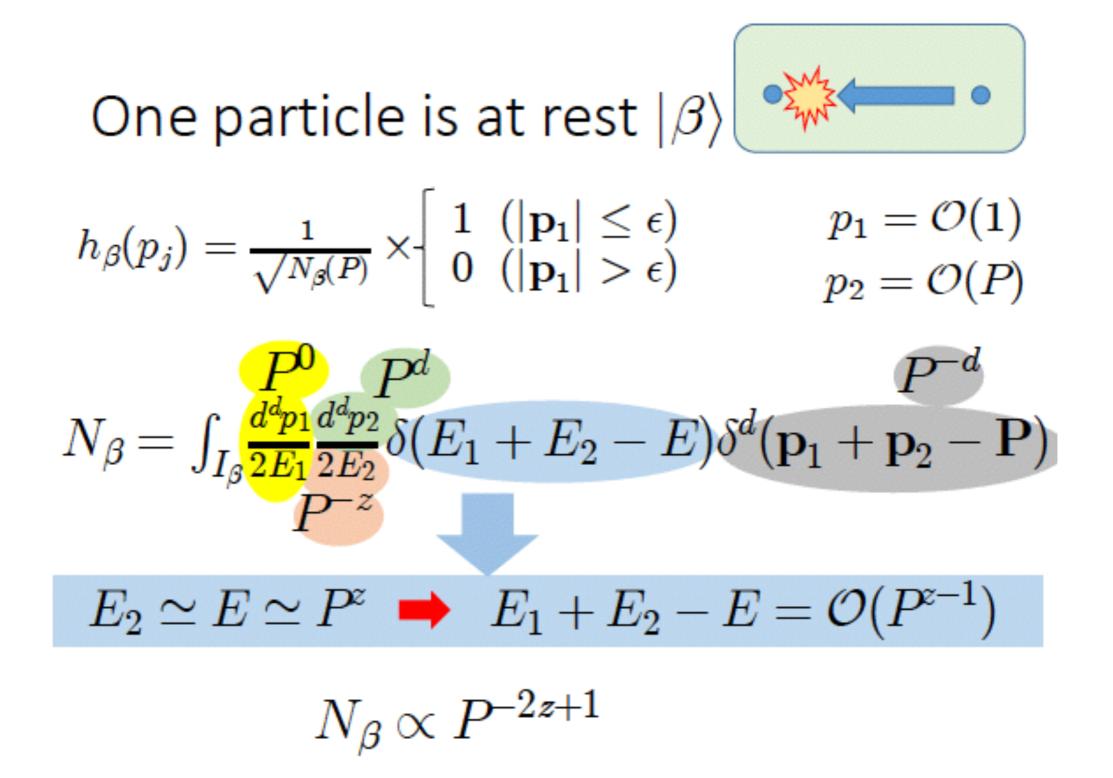
CoM-like state
$$|\alpha\rangle$$

Orthonormal func. on constant E and P $h_l(\mathbf{p}_j)$
 $|\alpha\rangle = \int d\Pi \ h_{\alpha}(\mathbf{p}_j)|\mathbf{p}_1, \mathbf{p}_2\rangle$
 $d\Pi := \frac{d^d p_1 d^d p_2}{2E_1 2E_2} \delta(E_1 + E_2 - E) \delta^d(\mathbf{p}_1 + \mathbf{p}_2 - \mathbf{P})$
 $h_{\alpha}(p_j) = \frac{1}{\sqrt{N_{\alpha}(P)}} \times \begin{bmatrix} 1 \ (|\mathbf{p}_1| - |\mathbf{p}_2| \le P/2) \\ 0 \ (|\mathbf{p}_1| - |\mathbf{p}_2| > P/2) \end{bmatrix}$

$$N_{\alpha} = \int_{I_{\alpha}} \frac{d^{d}p_{1}}{2E_{1}} \frac{d^{d}p_{2}}{2E_{2}} \delta(E_{1} + E_{2} - E) \delta^{d}(\mathbf{p}_{1} + \mathbf{p}_{2} - \mathbf{P})$$

CoM-like state
$$|\alpha\rangle$$

Orthonormal func. on constant E and P $h_l(\mathbf{p}_j)$
 $|\alpha\rangle = \int d\Pi \ h_{\alpha}(\mathbf{p}_j)|\mathbf{p}_1, \mathbf{p}_2\rangle$
 $d\Pi := \frac{d^d p_1 d^d p_2}{2E_1 2E_2} \delta(E_1 + E_2 - E) \delta^d(\mathbf{p}_1 + \mathbf{p}_2 - \mathbf{P})$
 $h_{\alpha}(p_j) = \frac{1}{\sqrt{N_{\alpha}(P)}} \times \begin{bmatrix} 1 \ (|\mathbf{p}_1| - |\mathbf{p}_2| \le P/2) \\ 0 \ (|\mathbf{p}_1| - |\mathbf{p}_2| > P/2) \end{bmatrix}$
 $P^d \ P^d \ P^{-z} \ P^{-d}$
 $N_{\alpha} = \int_{I_{\alpha}} \frac{d^d p_1 d^d p_2}{2E_1 2E_2} \delta(E_1 + E_2 - E) \delta^d(\mathbf{p}_1 + \mathbf{p}_2 - \mathbf{P})$
 $P^{-z} \ P^{-z} \qquad \propto P^{d-3z}$



 $\mathcal{M}(\alpha \to \alpha)$

Unitarity bound const. $\geq |\mathcal{M}(E, \mathbf{P}; \alpha \to \alpha)|$ $= \left| \int d\Pi(p) d\Pi(k) h_{\alpha}(p) \frac{h_{\alpha}(k)}{h_{\alpha}(k)} \mathcal{M}(\mathbf{p}_{1}, \mathbf{p}_{2} \to \mathbf{k}_{1}, \mathbf{k}_{2}) \right|$ $d\Pi(p) := \frac{d^{a_{p_1}}d^{a_{p_2}}}{2E_1}\delta(E_1 + E_2 - E)\delta^d(\mathbf{p}_1 + \mathbf{p}_2 - \mathbf{P})$ $\sim N_{lpha} \propto P^{d-3z}$ $\sim N_{lpha} P^a \propto P^{d-3z+a}$ Suppose $\mathcal{M}(\mathbf{p}_1, \mathbf{p}_2 \rightarrow \mathbf{k}_1, \mathbf{k}_2) = P^a$ $a \leq 3z - d$

4. Lifshitz Scalar Theory

第二論文の話

Tree-level unitarity and Renormalizability in Lifshitz Scalar Theorywith Fujimori, Inami, Izumi, Kitamuraaccepted by PTEP

Lifshitz Scalar理論において

1. 場の次元が負になる場合までの繰り込み可能性の条件を導出

 $\phi^2(\triangle^3 \phi), \phi(\partial_i \phi)(\partial_i \triangle^2 \phi), \cdots$ → Tree unitarity× → 繰り込み不可能

Optical theorem originated from unitarity of S-matrix

- (a) Unitarity of S-matrix $S^{\dagger}S = 1$
- (b) Optical theorem

$$Im\mathcal{M}_{nn} = -\pi \Sigma_{n'} \mid \mathcal{M}_{n'n} \mid^{2}$$
cross section

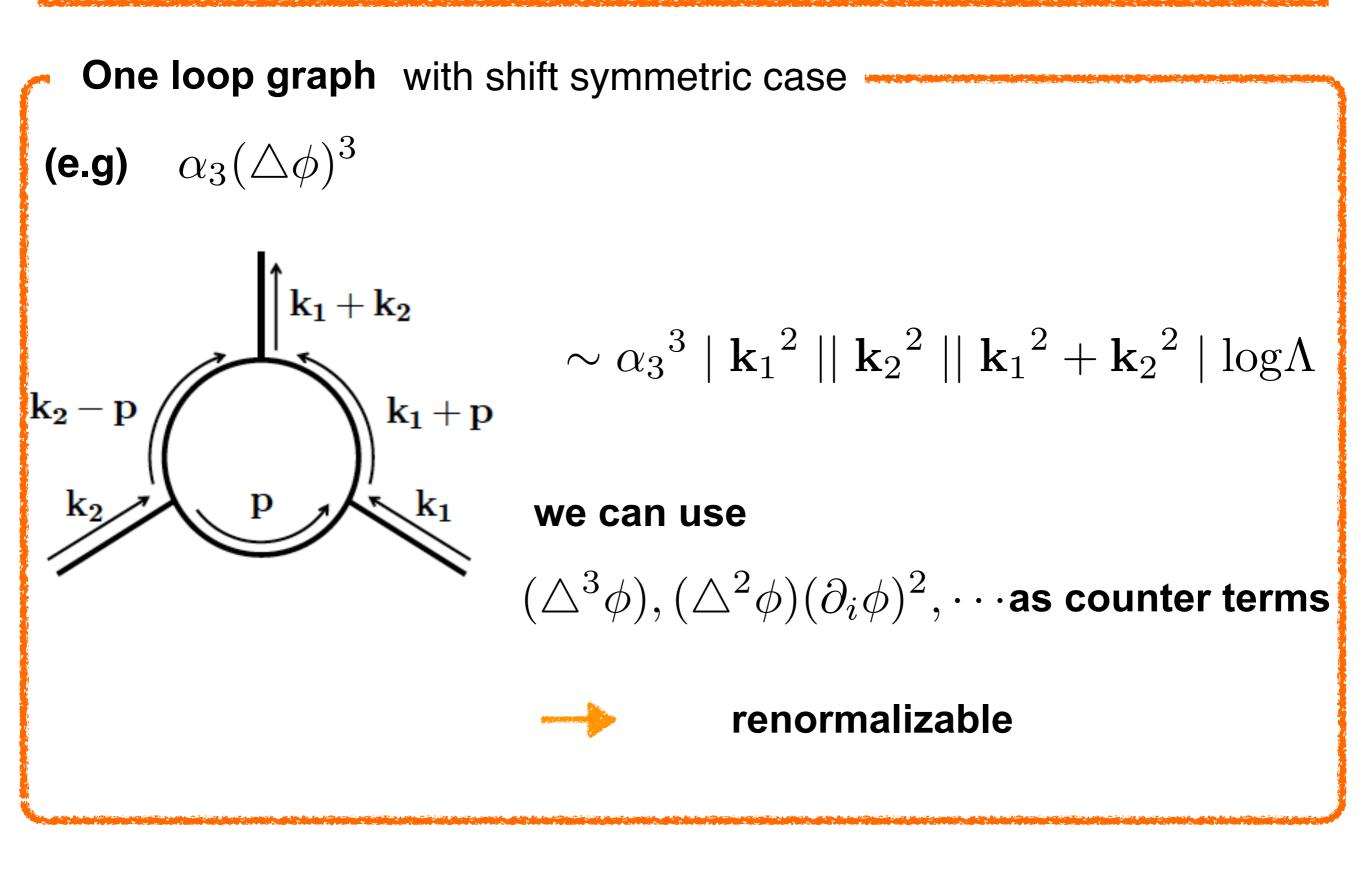
1

Remark; n: information of external line, n': information of internal line Unitarity bound is obtained from optical theorem

(1)
$$|\mathcal{M}_{nn}| \ge |\operatorname{Im}\mathcal{M}_{nn}| \ge \pi |\mathcal{M}_{nn}|^2 \rightarrow |\mathcal{M}_{nn}| \le \frac{1}{\pi}$$

(2) $\operatorname{Im}\langle f | T | i \rangle = \sum_{n} \int \frac{\mathrm{d}^{D-1}k_1}{\omega_1} \cdots \frac{\mathrm{d}^{D-1}k_n}{\omega_2} \delta(\Sigma\omega_n - E) \delta^{D-1}(\Sigma_i k_i - \mathbf{p}) \times \langle k_1 \cdots k_n | T | i \rangle^* \langle k_1 \cdots k_n | T | i \rangle$

By using (1)and (2), the value of unitarity bound for scattering amplitudes satisfying tree unitarity is determined



Tree-level Unitarity condition:Lorentz invariant theory

$$\begin{split} |M_{(l_1,\dots,l_{D-2})(l_1,\dots,l_{D-2})}| &\geq \pi \int \frac{d^{D-1}k_1}{2\omega_1} \frac{d^{D-1}k_2}{2\omega_2} \delta(\omega_1 + \omega_2 - 2E) \delta^{D-1}(\mathbf{k_1} + \mathbf{k_2}) \\ &\times \sum_{(l'_1,\dots,l'_{D-2})} Y_{(l'_1,\dots,l'_{D-2})}(\hat{\mathbf{k_1}}) M_{(l'_1,\dots,l'_{D-2})(l_1,\dots,l_{D-2})} \\ &\times \sum_{(l''_1,\dots,l''_{D-2})} Y_{(l''_1,\dots,l''_{D-2})}^* (\hat{\mathbf{k_1}}) M_{(l''_1,\dots,l''_{D-2})(l_1,\dots,l_{D-2})}^* \\ &= \frac{\pi}{8} E^{D-4} \sum_{(l'_1,\dots,l'_{D-2})} \left| M_{(l'_1,\dots,l'_{D-2})(l_1,\dots,l_{D-2})} \right|^2, \end{split}$$

 $Y_{l_{1},...,l_{D-2}}(\hat{\mathbf{k}}_{1})$ spherical harmonic function $\hat{\mathbf{k}}_1$ direction to which 1 particle propagate 2Eenergy in CM system

 $|M_{2,2'}| \propto E^m$ with $m \leq 4 - D$

2-2 scattering

$$\begin{split} |M_{(l_{1},...,l_{D-2})(l_{1},...,l_{D-2})}| &\geq \pi \int \frac{d^{D-1}k_{1}}{2\omega_{1}} \frac{d^{D-1}k_{2}}{2\omega_{2}} \delta(\omega_{1} + \omega_{2} - 2E) \delta^{D-1}(\mathbf{k_{1}} + \mathbf{k_{2}}) \\ &\times \sum_{(l'_{1},...,l'_{D-2})} Y_{(l'_{1},...,l'_{D-2})}(\hat{\mathbf{k}_{1}}) M_{(l'_{1},...,l'_{D-2})(l_{1},...,l_{D-2})} \\ &\times \sum_{(l''_{1},...,l''_{D-2})} Y_{(l''_{1},...,l''_{D-2})}(\hat{\mathbf{k}_{1}}) M_{(l''_{1},...,l''_{D-2})(l_{1},...,l_{D-2})} \\ &= \frac{\pi}{8z} k_{1}^{D-3z-1} \sum_{(l'_{1},...,l'_{D-2})} \left| M_{(l'_{1},...,l'_{D-2})(l_{1},...,l_{D-2})} \right|^{2}, \\ Y_{l_{1},...,l_{D-2}}(\hat{\mathbf{k}_{1}}) \qquad \text{spherical harmonic function} \\ &\text{direction to which 1 particle propagate} \quad \hat{\mathbf{k}}_{1} \end{split}$$

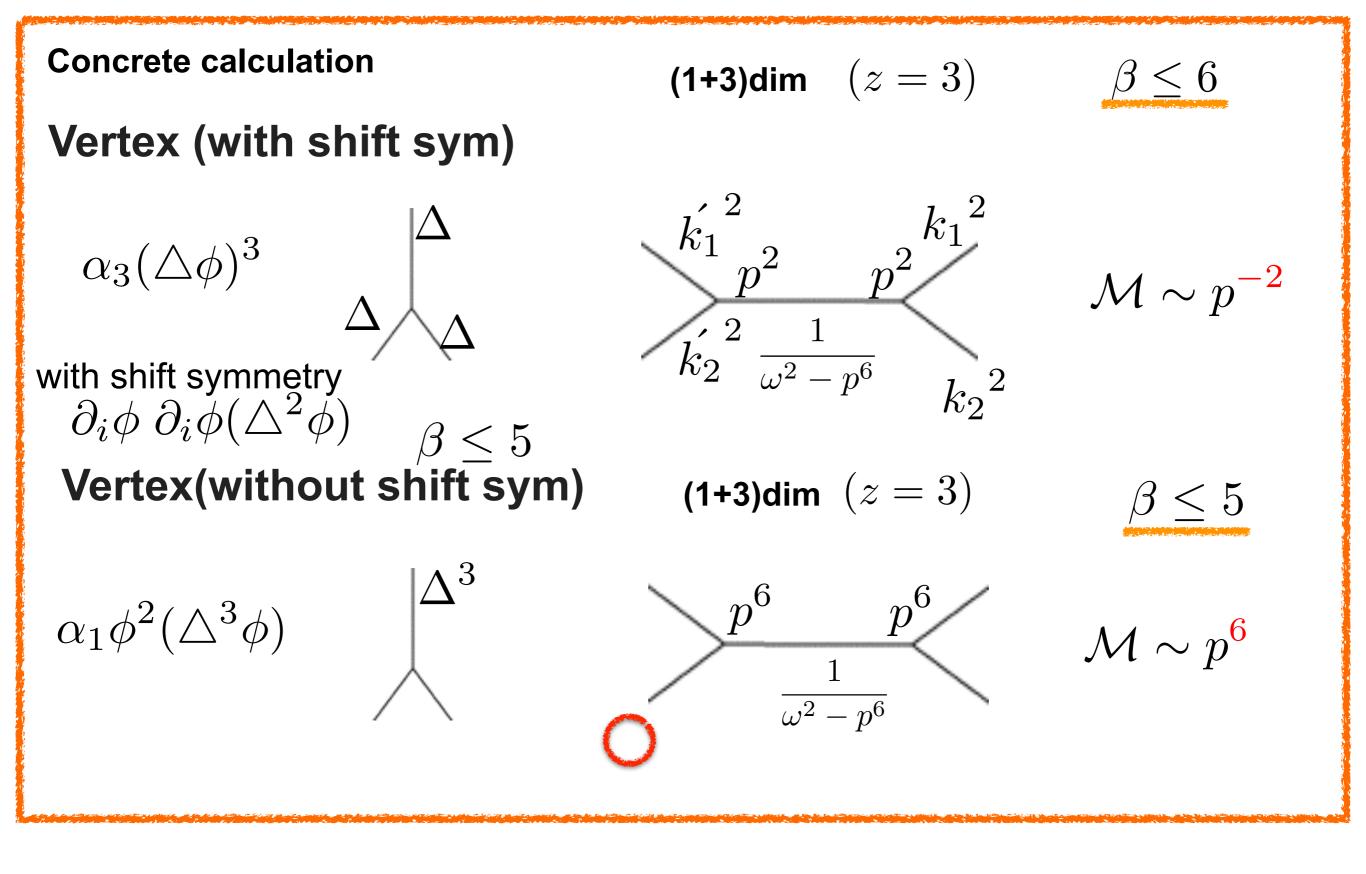
 $|M_{2,2'}| \propto k_1^m$ with $m \leq 3z + 1 - D$.

 $\mathbf{k_1} + \mathbf{k_2} = \mathbf{k}$

2E

The total momentum P and energy E are $P = k_1 + k_2$ and $E(=: P^z + \epsilon) = k_1^z + k_2^z$

$$\begin{split} k_{2}^{z} &= P^{z} - zP^{z-1}k_{1}(\hat{\mathbf{P}} \cdot \hat{\mathbf{k}}_{1}) + P^{z-2}k_{1}^{2} \left[\frac{z}{2} + \frac{z(z-1)}{2}(\hat{\mathbf{P}} \cdot \hat{\mathbf{k}}_{1})^{2} \right] + O(P^{z-3}) \\ \frac{(d^{D-1}k_{1})}{2k_{1}^{z}} \frac{(d^{D-1}k_{2})}{2k_{2}^{z}} &= \frac{k_{1}^{D-2} \left(d^{D-2}\hat{k}_{1} \right) \left(d^{D-1}P \right) (d\epsilon)}{4zk_{1}^{z}|\mathbf{P} - \mathbf{k}_{1}|^{z} \left[k_{1}^{z-1} - |\mathbf{P} - \mathbf{k}_{1}|^{z-2} \left(P(\hat{\mathbf{P}} \cdot \hat{\mathbf{k}}_{1}) - k_{1} \right) \right]}{|M_{\alpha,\alpha}|} \geq \pi \int \frac{k_{1}^{D-2} \left(d^{D-2}\hat{k}_{1} \right)}{4zk_{1}^{z}|\mathbf{P} - \mathbf{k}_{1}|^{z} \left[k_{1}^{z-1} - |\mathbf{P} - \mathbf{k}_{1}|^{z-2} \left(P(\hat{\mathbf{P}} \cdot \hat{\mathbf{k}}_{1}) - k_{1} \right) \right]} |M_{\hat{\mathbf{k}}_{1,\alpha}}|^{2} \\ &= \frac{k_{1}^{D-z-2}k_{2}^{1-2z}}{4z} \sum_{l'} |M_{l',\alpha}|^{2}, \\ \mathbf{2} \text{-} \mathbf{2} \text{ scattering} \\ |M_{2,2'}| \propto k_{1}^{m} \quad \text{with} \quad m \leq 3z + 1 - D. \end{split}$$



Unitarity Bound (general discussion)

Unitarity

$$SS^{\dagger} = 1 \qquad S = 1 + iT \qquad -i(T - T^{\dagger}) = TT^{\dagger}$$

$$E, \mathbf{P}, l|T|E', \mathbf{P}', l'\rangle = \delta(E - E')\delta^{d}(\mathbf{P} - \mathbf{P}')\mathcal{M}(E, \mathbf{P}; l \to l')$$

$$| \text{ Im } \mathcal{M}(E, \mathbf{P}; l \to l)| = \sum_{l'} |\mathcal{M}(E, \mathbf{P}; l \to l')|^{2}$$

$$||\mathcal{M}(E, \mathbf{P}; l \to l)| \qquad |\mathcal{M}(E, \mathbf{P}; l \to l')|^{2}$$

$$|\mathcal{M}(E, \mathbf{P}; l \rightarrow l')| \leq const.$$

Unitarity Bound

Higher derivative QG

Higher derivative Quantum Gravity

K.S.Stelle '77

(T

ghost term

$$S = \int d^{4}x \sqrt{-g} \left(aR^{2} + bR_{\mu\nu}R^{\mu\nu} + \kappa^{-2}\gamma R \right) \qquad \begin{array}{l} \gamma = 2 \\ \kappa^{2} = 32\pi G \end{array}$$
Propagator

$$\frac{1}{k^{2}} + \frac{1}{k^{2}}G(k^{4})\frac{1}{k^{2}} + \frac{1}{k^{2}}G(k^{4})\frac{1}{k^{2}}G(k^{4})\frac{1}{k^{2}} + \cdots \qquad \begin{array}{l} \frac{1}{k^{2}} - \frac{1}{k^{2}} - \frac{1}{k^{2}} \\ \frac{1}{k^{2}} - \frac{1}{k^{2}} - \frac{1}{k^{2}} \end{array}$$

 $= \frac{1}{k^2 - G(k^4)}$

 $k = (E, \mathbf{k})$

renormalizable but ghost!

from time derivative

make the theory unstable

Ghost term results from including more than 2rd order time derivatives

Hořava'idea [x] = -1 [t] = -z in mass dim Lifshitz scaling $\vec{x} \mapsto b\vec{x} \quad b$ arbitrary number $t \mapsto b^z t \quad \mathcal{Z}$ dynamical critical exponent $S=S_{ m K}-S_{ m V}$ separate action into $S_{ m K}$ and $S_{ m V}$ **Kinetic term Potential term** $S_{\rm K}$ including time derivatives $S_{\rm V}$ including spatial derivatives without time derivatives modified Propagator $z = 1 \rightarrow i$ sotropic $\frac{\mathbf{L}}{\omega^2 + c^2 \mathbf{k}^2 - G(\mathbf{k}^2)^z} \quad z \neq 1 \quad \rightarrow \qquad \text{Lorenz symmetry}$ **positive**! evade the ghost problem