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2. Unitarity

The renormalizability conditions are equivalent 
to the tree-level unitairty conditions 

Results

Purpose

1. Modified renormalizability conditions

Study two quantum properties

in Lifshitz scalar theory 
1. Renormalizability

Obtained
2. Modified tree-level unitarity conditions
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1. Introduction

Tree unitarity in Lorentz inv. theory

an scattering amplitude does not grow as  

Energy in center of mass

E ��� (� � 0)

amplitude 

E �

E

E ��
M

M
if -

Conjecture C.H.Llewellyn Smith ’73

tree unitarity renormalizability

� � 0 a theory has tree unitarity 

this condition is modified in Lifshitz theories

J. M. Cornwall etal ’73

equivalent? 



No counterexample is known

tree unitarity renormalizability
example

QED
Y-M theory
Weinberg-Salam model
Massive-vector theory 
4-Fermi theory

No counter-example!

☓ ☓
☓ ☓

tree unitarity renormalizability

1. Introduction



The conjecture is also valid for Einstein gravity
Berends ＆ Gastmans ’74

tree unitarity renormalizability
example

graviton-scalar system

graviton-photon system

graviton-graviton system

No counter-example!

☓ ☓
☓ ☓

tree unitarity renormalizability

☓ ☓

1. Introduction



1. Introduction

 Equivalence between renormalizability and tree unitarity has 
been studied within framework Lorentz invariant field theory

It is worth checking whether the equivalence 
also holds true for more generic field theory

Lifshitz-type field theory, Non-Commutative field theory…..



1. Introduction

In our work, we have studied Lifshitz-type field theory
in which Lorentz symmetry is violated

・The equivalence is originated from quantum theory?

・Tree unitarity can be tool for checking the renormalizability
of less symmetric field theory instead of loop calculation?

(e.g.)
Horava-Lifshitz gravity



2. Lifshitz Scalar Theory



�x �� b�x

t �� bzt

b

z dynamical critical exponent 

[x] = �1 [t] = �z in mass dim
arbitrary number 

Lifshitz scaling

z degree of anisotropy between space and time

 Lifshitz Scalar Theory

:
:

:

S =
�

dtddx

�
1
2
�
�

�2
t � f(��)

�
� + Lint

�
� := �i�i

f(��) = (��)z + · · · E =
�

f(p2)
dispersion relation

SLS = Sfree + Sint

z = 1 isotropic
Lorenz symmetry

→

z �= 1 →improve UV behavior

allow higher spatial derivative
z = 3

� 1
E2 � p6



2. Lifshitz Scalar Theory

[�] = 0[�] =
d� z

2
[�] < 0

The dimension of the scalar field is depend on z and d

d > z

d = z

d < z

[�] > 0(iii).

(i).

(ii).

  conventional Power-Counting Renormalizable (PCR) condition is not enough
to check the renormalizability of the Lifshitz scalar (-type) field theory

To Judge Renormalizability of  Lifshitz-type theory needs modified PCR condition

 Extended PCR condition

[x] = �1 [t] = �z in mass dim

[�] = 0
Coupling constant

In the case of (i). and (ii).,

We show that 



3.Renormalizability

[�] = 0

[�] < 0

d = z

d < z

(i).

(ii).

Investigate one-loop structure

studied by using superficial degree of divergence 

but, I will skip this



3.Renormalizability

Conventional PCR

Sint = �

�
dtddx�a

x�b

[�] = �[dt]� d[dx]� a[�x]� b[�]
= z + d� a� b(d� z)/2 � 0

[dt] + d[dx] + 2[�t] + 2[�] = 0

[p] = 1, [E] = z, [�] = (d� z)/2

S2 =
�

dtddx�(��2
t � (��)z)�

second order action

interaction term

conventional PCR condition

[x] = �1 [t] = �z

[p] = 1 [E] = z



Nonrenormalizable term with conventional PCR
Example d=3, z=5

S2 =
�

dtd3x�(��2
t � (��)5)�

Sint = �

�
dtd3x �2(�3�)2

[�] = 0

[�] = �1

�
d�d3k(

1
�3 � p10

)n(p12)n � �8+2n

-5

(satisfies the conventional PCR)

1-loop 2n-point function
-1 1 -1

For any n, this diverges
infinite number of counter terms are required

[�] = �[dt]� 3[dx]� 12[�x]� 4[�]

3.Renormalizability

= 0



 Extended PCR

 Check the divergence structure of the loop diagram 

Sint = �

�
dtd3x �2(�3�)2

is dimension 10
Therefore, this interaction term lead to non-renormalizable

Only internal lines are important

with d=3, z=5, if dimension of operator became 8
it is marginal
However, (�3�)2

rerated to loop 

, which is the part contributes to loop calculation

Any part must be less than dimension 8

[dtd3x]inverse of 

3.Renormalizability

-8 



 Extended PCR

 From the following interaction term 

Sint = �

�
dtd3x �2(�3�)2

3.Renormalizability

we can describe the Extended PCR  condition for quartic interaction

S4 =
�

dtddx (�a1
x �) (�a2

x �) (�a3
x �) (�a4

x �)

�[dtd3x] > (a3 + [�] + a4 + [�])

1. whole

3. a portion (ii)

2. a portion (i)

z + d � a1 + a2 + a3 + a4 + 4[�]

z + d > a2 + a3 + a4 + 3[�]

z + d > a3 + a4 + 2[�] a3 + a4 � 2z � 1

a2 + a3 + a4 � (5z � d� 1)/2

1. whole:

3. a portion (ii):

2. a portion (i):

a1 + a2 + a3 + a4 � 3z � d

 Extended PCR



 Extended PCR

3.Renormalizability

S3 =
�

dtddx (�a1
x �) (�a2

x �) (�a3
x �) ,

we can describe the Extended PCR  condition for cubic interaction

a1 + a2 + a3 � (5z � d)/2

a2 + a3 � 2z � 1

 Extended PCR

integersa1, a2, a3, z

a1 � a2 � a3



4. Tree-level Unitarity 



cross section

S†S = 1

Unitarity bound is obtained from optical theorem

(a) Unitarity of S-matrix

 (b) Optical theorem ImMnn = ���n� | Mn�n |2

→ | Mnn | �
1
�

Scattering amplitudes is bounded by using optical theorem originated

Optical theorem originated from unitarity of S-matrix

| Mnn |� | ImMnn | � � | Mnn |2

4. Tree-level unitarity

unitarity condition of S-matrix



4. Tree-level unitarity
Two scattering states are considered in Lifshitz-type theory

Need to consider even laboratory-like system
All scattering process are independent due to broken Lorentz symmetry



Quartic Interactions S4 =
�

dtddx (�a1
x �) (�a2

x �) (�a3
x �) (�a4

x �)

M(p1,p2 � k1,k2) � P a1+a2+a3+a4 .

a1 + a2 + a3 + a4 � 3z � d

M(�� �)

M(p1,p2 � k1,k2) � P a3+a4 .

a2 + a3 + a4 � (5z � d� 1)/2

M(� � �)

4. Tree-level unitarity

a3 + a4 � 2z � 1

M(p1,p2 � k1,k2) � P a2+a3+a4

M(�� �)

a1 � a2 � a3 � a4

2

([�] = 0, [�] = 0)



Examples of quartic interaction

S4 =
�

dtddx (�a1
x �) (�a2

x �) (�a3
x �) (�a4

x �)

M(p1,p2 � k1,k2) � P a1+a2+a3+a4 .

M(�� �)

M(p1,p2 � k1,k2) � P a3+a4 .

M(� � �)

z = d = 3

a1 + a2 + a3 + a4 � 6

examples

�3(�3�)

a1 = a2 = a3 = 0, a4 = 6

☓

4. Tree-level unitarity

(� 3z � d)

(� 2z � 1)a3 + a4 � 5

a1 � a2 � a3 � a4

�3(�3�)
a1 = a2 = a3 = 0, a4 = 6

more strict

([�] = 0, [�] = 0)



Cubic Interaction

M(�� �)

M(� � �)

S3 =
�

dtddx (�a1
x �) (�a2

x �) (�a3
x �) ,

M(p1,p2 � k1,k2) � P 2a1+2a2+2a3�2z.

M(p1,p2 � k1,k2) �
V (p1,p2,p1 + p2)V (k1,k2,k1 + k2)

E2 � f(P 2)

s-channel

4. Tree-level unitarity

M(�� �)

a2 + a3 � 2z � 1 a1 + 2a2 + 2a3 � (9z � d� 1)/2.

M(p1,p2 � k1,k2) � P a1+2a2+2a3�2zM(p1,p2 � k1,k2) � P 2a2+2a3�2z

([�] = 0, [�] = 0)

a1 � a2 � a3

a1 + a2 + a3 � (5z � d)/2



Quartic Interactions
S4 =

�
dtddx (�a1

x �) (�a2
x �) (�a3

x �) (�a4
x �)

a1 + a2 + a3 + a4 � 3z � d

M(�� �)

a2 + a3 + a4 � (5z � d� 1)/2

M(� � �)

4. Tree-level unitarity

a3 + a4 � 2z � 1
M(�� �)

a1 � a2 � a3 � a4

Tree unitarity constraints

a3 + a4 � 2z � 1

a2 + a3 + a4 � (5z � d� 1)/2

a1 + a2 + a3 + a4 � 3z � d

 Extended PCR



Cubic Interaction

M(�� �)

M(� � �)

S3 =
�

dtddx (�a1
x �) (�a2

x �) (�a3
x �) ,

4. Tree-level unitarity

M(�� �)

a2 + a3 � 2z � 1

a1 + 2a2 + 2a3 � (9z � d� 1)/2. no additional condition

a1 + a2 + a3 � (5z � d)/2 a1 + a2 + a3 � (5z � d)/2

a2 + a3 � 2z � 1

Tree unitarity constraints  Extended PCR

a1 � a2 � a3



Outlook

Tree unitarity conditions and Extended PCR condition
 are identical in Lifshitz (non-relativistic) field theory

It inferred that the equivalence between both the two
 hold true for more large class of field theory

the results of our work can be applicable to study in various field theory, 
such as Horava-Lifshitz gravity, non-commutative field theory…

Thus, 



Outlook

 ・Lifshitz scalar (LS) theory is renormalizable if LS theory is 
invariant under certain symmetry such as a shift symmetry

 ・tree unitarity is useful to study in proof of the 
renormalizability even in Lifshitz-type field theory

 ・Horava-Lifshitz gravity is a power-counting renormalizable 
gravity theory with foliation-preserving diffeomorphisms

allow finite counterterms

which is more strict than shift symmetry 

 ・HL gravity is expected to be a renormalizable gravity theory



Outlook

M(�� �)

M(p1,p2 � k1,k2) � P 2a1+2a2+2a3�2z.

a1 + a2 + a3 � 6
H̃11H̃11

H̃11 H̃11

k

k1 k2

ḱ1
ḱ2

M � k6



1 . Investigated the renoralizability of Lifshitz scalar theory

Summary

1-1. formulated Extended PCR condition

2. Investigated the unitarity of Lifshitz scalar theory

2-1. derived the tree-unitarity conditions for 
the scattering amplitudes of Lifshitz scalar theory

2-2. constraint on the quartic and cubic interaction 
terms from the tree-unitarity conditions

Equivalence between tree unitarity and renormalizability
 hold true for Lifshitz (non-relativistic) field theory!!



Thank you!!



Unitarity bound for scattering amplitude

Appendices



z=3 (1+3)dim    

Lfree =
1
2
�̇2 +

1
2
��3�LLS = Lfree + Lint

[�] = 0[dt] = �3[dx] = �1

marginal interaction terms

(��)3,�2(��)3, etc

with shift symmetry (                            )

without shift symmetry 

(��)3, (�2�)(�i�)2, · · ·
�� � + c

[�] = 0d = z(i).

�2(�3�),�2(�i�)(�i�2�), · · ·

(�3�)�n lead to non-renormalizable?

up to 6th order  z=3 marginal → �i

d = z(i).Appendices



if 

(e.g) Vertex

, no divergence 

even if , 
 but we can renormalize by using counter term

there are divergence

�4(�2�)2(�i�)2

n > 6

n � 6

� �4
n/2

�n/2�

i=1

k2i · k2i�1

� �
d�d��5�n

�
sin

n
3 � + O

�
k

�

��

0 � � � �

renormalizable

with shift symmetric caseOne loop graph

d = z(i).Appendices



�1�
2(�3�)

� �1
n�6

not renormalizable

(e.g) Vertex

� �1
n

�
d�d��5

�
sin2n � + O

�
k

�

��

0 � � � �

Scounter �
��

n=0

�1
n

�
dtd3x(�6�n+ term with derivatives)

need infinite number of counter terms

One loop graph without shift sym

�2(�3�),�(�i�)(�i�2�), · · · (�3�)�n

d = z(i).

← I will show that this term 
is forbade by unitarity

Appendices



with shift symmetry (                            )

(��)3, (�2�)(�i�)2, · · ·

without shift symmetry 

�2(�3�),�(�i�)(�i�2�), · · ·

�� � + c

allow non-renormalizable terms

renormalizable

 ・Lifshitz scalar (LS) theory is a power-counting renormalizable,  
but LS theory needs certain symmetry to be described finite 

number of counter terms

Appendices



with shift sym without shift 
sym

One-loop ✖

Tree unitarity ✖
(Lab-like system)

Example of the correspondence
in the case with/without shift symmetry

Equivalence between tree unitarity and renormalizability
 hold true for Lifshitz (non-relativistic) field theory!!

Appendices



Appendices



Appendices



Appendices



Appendices



Appendices



Appendices



Appendices



Appendices



Appendices



4. Lifshitz Scalar Theory
第二論文の話 

1. 場の次元が負になる場合までの繰り込み可能性の条件を導出

繰り込み可能性とTree unitarityの条件が等価である事を示した

with shift symmetry (                        )

(��)3, (�2�)(�i�)2, · · ·

without shift symmetry 

�2(�3�),�(�i�)(�i�2�), · · ·

�� � + c

繰り込み不可能

繰り込み可能Tree unitarity⭕

Tree unitarity❌

第一論文の話

2. Tree unitarityの条件を導出

Lifshitz Scalar理論において
with Fujimori, Inami, Izumi, Kitamura
Tree-level unitarity and Renormalizability in Lifshitz Scalar Theory

 accepted by PTEP

例



cross section

S†S = 1

Unitarity bound is obtained from optical theorem

(a) Unitarity of S-matrix

 (b) Optical theorem ImMnn = ���n� | Mn�n |2

→ | Mnn | �
1
�

(1)

(2)

Remark; n: information of external line, n’: information of internal line

By using (1)and (2), the value of unitarity bound for scattering amplitudes

Optical theorem originated from unitarity of S-matrix

Im�f | T | i� =
�

n

�
dD�1k1

�1
· · · dD�1kn

�2
�(��n � E)�D�1(�iki � p)

��k1 · · · kn | T | i���k1 · · · kn | T | i�

| Mnn |� | ImMnn | � � | Mnn |2

Appendices

satisfying tree unitarity is determined



�3(��)3

as counter terms

� �3
3 | k1

2 || k2
2 || k1

2 + k2
2 | log�

(e.g)

we can use

(�3�), (�2�)(�i�)2, · · ·

renormalizable

One loop graph with shift symmetric case

Appendices



Appendices

 2-2 scattering

Tree-level Unitarity condition:Lorentz invariant theory

spherical harmonic function

k̂1direction to which 1 particle propagate
energy in CM system 2E



Appendices

CM system

spherical harmonic function

k̂1direction to which 1 particle propagate
energy in CM system 2E

 2-2 scattering

Tree-level Unitarity condition:Lifshitz-type theory



Appendices

Lab system

　　　　　　　

Tree-level Unitarity condition:Lifshitz-type theory

 2-2 scattering



�3(��)3

p6

Vertex (with shift sym)

Vertex(without shift sym)

�1�
2(�3�) p6

M � p6

� � 5

�3

�

� �
ḱ2

2

ḱ1
2 k1

2

k2
2

p2 p2
M � p�2

(1+3)dim � � 6

p6

(1+3)dim (z = 3)

1
�2 � p6

1
�2 � p6

Concrete calculation (z = 3)

Appendices

�i� �i�(�2�)
with shift symmetry

� � 5





Higher derivative QG
Higher derivative Quantum Gravity

 renormalizable

S =
�

d4x
�
� g

�
aR2 + bRµ�Rµ� + ⇥�2�R

�
K.S.Stelle ’77

1
k2
� 1

k2 � 1
G

ghost term

but  ghost!

Propagator

1
k2

+
1
k2

G(k4)
1
k2

+
1
k2

G(k4)
1
k2

G(k4)
1
k2

+ · · ·

=
1

k2 �G(k4)

� = 2
�2 = 32�G

make the theory renormalizable

make the theory unstable

Ghost term results from including 
more than 2rd order time derivatives

k = (E,k)

from time derivativeE

Appendices



Kinetic term

�x �� b�x

t �� bzt

b

z dynamical critical exponent 

[x] = �1 [t] = �z in mass dim
Hořava’idea

arbitrary number 

S = SK � SV separate action into         and 

SV
including spatial derivatives 

without time derivativesincluding time derivatives 

SVSK

SK

Potential term

Lifshitz scaling

z = 1 isotropic

Lorenz symmetry

→modified Propagator

z �= 1

evade the ghost problem

→

positive!

1
�2 � c2k2 �G(k2)z

Appendices


