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Dyson-Schwinger equations YM in d=3 Summar;

From Green functions to 'observables’

Introduction

Basic building blocks of functional equations: n-point functions I';,_ ;.

The set of all Green functions

Effective action: generating describes the theory completely.
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Introduction

Basic building blocks of functional equations: n-point functions I';,_ ;.

The set of all Green functions

Effective action: generating describes the theory completely.
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Green functions — 'observables’?

Examples:
o Bound state equations — masses and properties of hadrons

o (Pseudo-)Order parameters — Phases and transitions
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YM in d=3 Summary & conclusions

Landau gauge Yang-Mills theory

Gluonic sector of quantum chromodynamics: Yang-Mills theory

1
L= §F2+£gf+£gh

Fu = 0,A, —0,A, +iglA, Al

Landau gauge

o simplest one for functional equations

1

Q 8MAM:O: ﬁgf:2£

o requires ghost fields:
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The tower of DSEs
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Infinitely many equations. In QCD, every n-point function depends on (n + 1)-
and possibly (n + 2)-point functions.
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Truncating the equations

Truncation
o Drop quantities (unimportant?)
o Model quantities (good models available? 'true’ or 'effective’?)
o Use fits

Ideally: Find a truncation that has (l) no parameters and yields (Il) quantitative
results.
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Truncating the equations

Truncation
o Drop quantities (unimportant?)
o Model quantities (good models available? 'true’ or 'effective’?)
o Use fits

Ideally: Find a truncation that has (I) no parameters and yields (Il) quantitative
results.

Guides Practical obstacle: Manage the system
Perturbation theory of equations. — Automatization tools
[Alkofer, MQH, Schwenzer '08; Braun, MQH '11;
MQH, Mitter '11; http://tinyurl.com/dofun2;

(]

o Symmetries
Lattice

©

http://tinyurl.com/crasydse]

(%]

Analytic results
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Truncation of Yang-Mills system

Neglect all non-primitively divergent Green functions.
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Truncation of Yang-Mills system

Introduction

Neglect all non-primitively divergent Green functions.

Full propagator equations (two-loop diagrams!):
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Truncation of Yang-Mills system

Summary & conclusions

Neglect all non-primitively divergent Green functions.

Full propagator equations (two-loop diagrams!):
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Truncated three-point functions: Truncated four-gluon vertex:
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Truncation of Yang-Mills system

Neglect all non-primitively divergent Green functions.

Full propagator equations (two-loop diagrams!):
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727 J_e_ A

LI O deyead

Truncated three-point functions: Truncated four-gluon vertex:

T G >< >< L ,
Yy Ny
- LY DR ¢

Technical questions: spurious divergences in gluon propagator, RG resummation
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Yang-Mills theory in 3 dimensions

d=3
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Yang-Mills theory in 3 dimensions

d=3

Historically interesting because cheaper on the lattice — easier to reach the IR,
e.g., [Cucchieri '99; Cucchieri, Mendes, Taurines '03; Cucchieri, Maas, Mendes, '08; Maas '08, '14;
Maas, Pawlowski, Spielmann, Sternbeck, von Smekal '09; Cucchieri, Dudal, Mendes, Vandersickel '11;

Bornyakov, Mitrjushkin, Rogalyov '11, '13; Cucchieri, Dudal, Mendes, Vansersickel '16]
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Continuum results:
o Coupled propagator DSEs: [Maas, Wambach, Griiter, Alkofer '04]
o (R)GZ [Dudal, Gracey, Sorella, Vandersickel, Verschelde '08]
o YM + mass term: [Tissier, Wschebor '10, '11]
o DSEs of PT-BFM: [Aguilar, Binosi, Papavassiliou '10]
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Yang-Mills theory in 3 dimensions: Why again?

NB: Numerically not cheaper for functional equations of 2- and 3-point
functions.
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Yang-Mills theory in 3 dimensions: Why again?

NB: Numerically not cheaper for functional equations of 2- and 3-point
functions.

Advantages:
o UV finite: no renormalization, no anomalous running

o Spurious divergences easier to handle

= Many complications from d = 4 absent!

Markus Q. Huber University of Graz Feb. 23, 2016 8/17



Introduction Dyson-Schwinger equations YM in d=3 Summary & conclusions

Subtraction of divergences of gluon propagator (d=4)

@ Logarithmic divergences handled by subtraction at po.

@ Quadratic divergences subtracted, coefficient Cyyp.

Z(?) = Za(p)t — Cun(M) (1 - 12)

[ P> p;

calculated right-hand side
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@ Logarithmic divergences handled by subtraction at po.

@ Quadratic divergences subtracted, coefficient Cyyp.

Z(?) = Za(p)t — Cun(M) (1 - 12)

[ P> p;

calculated right-hand side

One-loop diagrams with model vertices: Cy,1, can be calculated anlytically,
since it is a purely perturbative [MQH, von Smekal '14].

Dynamic vertices? Two-loop diagrams?
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Subtraction of divergences of gluon propagator (d=3)
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Importance of spurious divergences

Simplification in d = 3:

Coup =aN+bInA

—  fit (works for numeric vertices and two-loop diagrams)
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Importance of spurious divergences

Simplification in d = 3:

Coup =aN+bInA

—  fit (works for numeric vertices and two-loop diagrams)

051

0.0

Small deviations — large effect.
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Results: Propagators
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Results: Three-point functions

Introduction

Dressings:

AP*P%P%) \'
14

o Maximum position shifted.
o Bump height ok.

09
i 2 3 5 PlGeV]
[lattice: Maas, unpublished]
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08 H o Good agreement with lattice data.
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s o Linear IR divergence.
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[lattice: Cucchieri, Maas, Mendes '08]
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Results: Three-point functions

Ratio lattice/DSE results:

Alall/ADSE(pZ:pZ‘pZ’)
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\ o Good agreement with lattice data.

o Linear IR divergence.
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Cancellations in gluonic vertices

Three-gluon vertex:

DAAA 2 2 2
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o4t mm——— gluon tr.
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N\
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o2 o Individual contributions large.
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Cancellations in gluonic vertices

Three-gluon vertex:

D2 0, p)
0.6 ghost tr.
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o2 o Individual contributions large.
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Non-perturbative gauge fixing

Gribov copies: Gauge equivalent configurations that fulfill the Landau gauge
condition 0A = 0.

Up to here the minimal Landau gauge was shown for lattice data.
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Non-perturbative gauge fixing

Gribov copies: Gauge equivalent configurations that fulfill the Landau gauge
condition 0A = 0.

Up to here the minimal Landau gauge was shown for lattice data.

Another possibility: Absolute Landau gauge (global minimum of gauge fixing

functional)

— Different solutions on the lattice,
e.g. [Maas '09, '11; Cucchieri '97; Bogolubsky et al. '05; Sternbeck, Miiller-Preussker '12].

Ghost dressing function with type 1 weighting |
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NB: Different solutions also from functional equations [Fischer, Maas, Pawlowski '08].
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Non-perturbative gauge fixing

Gribov copies: Gauge equivalent configurations that fulfill the Landau gauge
condition 0A = 0.

Up to here the minimal Landau gauge was shown for lattice data.

Another possibility: Absolute Landau gauge (global minimum of gauge fixing
functional)

— Different solutions on the lattige)
e.g. [Maas '09, '11; Cucchieri 'O% golubsky et al. '05; Sternbeck, Miiller-Preussker '12].
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NB: Different solutions also from functional equations [Fischer, Maas, Pawlowski '08].
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Solution from the 3Pl effective action

Different set of functional equations:
equations of motion from 3Pl effective action (at three-loop level)
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Summary & conclusions

Solution from the 3Pl effective action

Different set of functional equations:

equations of motion from 3Pl effective action (at three-loop level)

0.5+

T T B

— Very similar results.

-1.0

-15

-2.0

For yet another set of functional equations (functional RG for d = 4), see talk

by Mitter and poster by Cyrol.
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Comparison d =3 and d =4

Two-loop diagrams important in propagators.
[Blum, MQH, Mitter, von Smekal '14; Meyers, Swanson '14]

©

Two-loop diagrams not important in three-gluon vertex.
[Blum, MQH, Mitter, von Smekal '14; Eichmann, Williams, Alkofer, Vujinovic '14]

©

o Vertices deviate only mildly from tree-level above 1 GeV.
[Blum, MQH, Mitter, von Smekal '14; Eichmann, Williams, Alkofer, Vujinovic '14; Binosi, Ibanez,
Papavassiliou '14; Cyrol, MQH, von Smekal '14]

©

RG improvement irrelevant in d = 3. Role in d = 47
[Eichmann, Williams, Alkofer, Vujinovic '14]
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Summary and conclusions

Test truncation effects in d = 3, where spurious divergences and RG
resummation are understood:

o Used a self-contained truncation — no model parameters.

o Truncation stable under all tested variations:

o comparison with 3Pl
o changing the four-gluon vertex
o different DSEs for the ghost-gluon vertex

o Direct relation between different solutions in continuum and on the lattice
to be understood.
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Summary and conclusions

Test truncation effects in d = 3, where spurious divergences and RG
resummation are understood:

o Used a self-contained truncation — no model parameters.

o Truncation stable under all tested variations:

o comparison with 3Pl
o changing the four-gluon vertex
o different DSEs for the ghost-gluon vertex

o Direct relation between different solutions in continuum and on the lattice
to be understood.

Thank you for your attention.
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