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fQCD collaboration - QCD (phase diagram) with FRG:
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QCD phase diagram with functional methods

works well at µ = 0: agreement with lattice

different results at large µ
(possibly already at small µ)

calculations need model input:
I Polyakov-quark-meson model with FRG:

F inital values at Λ ≈ O(ΛQCD)
F input for Polyakov loop potential

I quark propagator DSE:
F IR quark-gluon vertex

possible explanation for disagreement:

µ 6= 0: relative importance of diagrams changes

⇒ summed contributions vs. individual contributions
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Back to QCD in the vacuum (Wetterich equation)

use only perturbative QCD input: αS(Λ = O(10) GeV) (and mq(Λ))

Wetterich equation with initial condition S [Φ] = ΓΛ[Φ]

∂kΓk [A, c̄ , c , q̄, q] = 1
2

−

−

⇒ effective action Γ[Φ] = lim
k→0

Γk [Φ]

∂k : integration of momentum shells controlled by regulator

full field-dependent equation with (Γ
(2)
k [Φ])−1 on rhs

gauge-fixed approach (Landau gauge):
I ghosts appear
I gauge invariance: Γ(k) fulfills (modified) Slavnov-Taylor identities
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Vertex Expansion

approximation necessary - vertex expansion

Γ[Φ] =∑
n

∫
p1,...,pn−1

Γ
(n)
Φ1···Φn

(p1, . . . , pn−1)Φ1(p1) · · ·Φn(−p1 − · · · − pn−1)

functional derivatives with respect to Φi = A, c̄ , c, q̄, q:
⇒ equations for 1PI n-point functions, e.g. gluon propagator:

+ 1
2

− 2=∂t
−1

want “apparent convergence” of Γ[Φ] = lim
k→0

Γk [Φ]
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“Quenched” Landau gauge QCD

two crucial phenomena: SχSB and confinement

similar scales - hard to disentangle see e.g. [Williams, Fischer, Heupel, 2015]

quenched QCD: allows separate investigation:

recent results for YM propagators [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published]

matter part (only one slide) [MM, Strodthoff, Pawlowski, 2014]
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Vertex Expansion in YM theory [Cyrol, Fister, MM, Strodthoff, Pawlowski, to be published]

full. mom. dep. full. mom. dep. sym. point and
tadpole config.

⇒ cf. poster Anton K. Cyrol
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Motivation
• Calculate QCD observables from first principles
• Pin down the QCD phase diagram

• Gain understanding of the confinement mechanism
• Gauge theories are a central part of the standard model
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Setup
• The generalized effective action Γk[φ] interpolates between the classical

action S[φ] = lim
k→Λ→∞

Γk[φ] and the 1PI effective action Γ[φ] = lim
k→0

Γk[φ]

• The Wetterich equation is an exact evolution equation for the generalized

effective action, which is given by

k ∂kΓk[φ] =

∫

p

1

2
Gµν
k,ab[φ] k ∂kR

ba
k,µν −Gab

k [φ] k ∂kR
ba
k (1)

• Taking functional derivatives of Eq. (1) yields eqs. for n-point functions
• The only parameter is the running coupling at the renormalisation scale

Numerics
Highly automated work flow is necessary, for which we use several tools:

• DoFun, a Mathematica package for deriving functional equations
• FormTracer, Mathematica package that takes traces with Form
• CreateKernels, a Mathematica package that generates OO C++ code
• Frgsolver, a flexible high-performance C++ OOP framework

Truncation
• Vertex expansion includes all classical tensor structures
• Largest trunc. of 4D Yang-Mills theory to date, no modeling necessary
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Results
Gluon propagator dressing
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Gluon Mass Gap
• Gauge invariance is encoded in modified STIs
• mSTIs lead to non-zero mass term at k > 0
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Conclusions
• First model independent calculation of 4D YM correlation functions

• We have successfully dealt with the gluon mass (gap)

• Extension to full QCD [1], finite temperature [2], and density is feasible

References
[1] M. Mitter, J. M. Pawlowski, and N. Strodthoff, Phys.Rev. D91, 054035

(2015), arXiv:1411.7978 [hep-ph] .

[2] L. Fister and J. M. Pawlowski, (2011), arXiv:1112.5440 [hep-ph] .
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Derivation of equations
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Feynman Rules
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VertEXpand
Mathematica package for the derivation of 
vertices from a given action using FORM
(Denz,Held,Rodigast; unpub.)
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Mathematica package for the 
derivation of functional equations
(Braun,Huber; Comput.Phys. 
Commun. 183 (2012) 1290-1320)
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tracing tool using FORM
(Cyrol,Mitter,Pawlowski,Strodthoff; in prep.)
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(Cyrol,Mitter,Pawlowski,Strodthoff; unpub.)
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(Cyrol,Mitter,Pawlowski,Strodthoff; unpub.)

ActionAction

[Cyrol, MM, Pawlowski, Strodthoff, 2013-2016]
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(Truncated) Equations [Cyrol, Fister, MM, Strodthoff, Pawlowski, to be published]
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YM propagators [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published]
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YM vertices I [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published]

comparison to Sternbeck ’06
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YM vertices II [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published]
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Apparent Convergence [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published]
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Quenched quark propagator [MM, Pawlowski, Strodthoff, 2014]
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Quenched quark propagator [MM, Pawlowski, Strodthoff, 2014]
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Outlook: unquenched gluon propagator
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Summary and Outlook

(quenched) QCD with functional RG

QCD phase diagram: need for quantitative precision

quenched QCD in vacuum:
I sole input αS(Λ = O(10) GeV) and mq(Λ = O(10) GeV)
I good agreement with lattice simulations (sufficient?)

unquenching (first results)

finite temperature/chemical potential

more checks on convergence of vertex expansion

bound-state properties (form factor,PDA. . . )
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