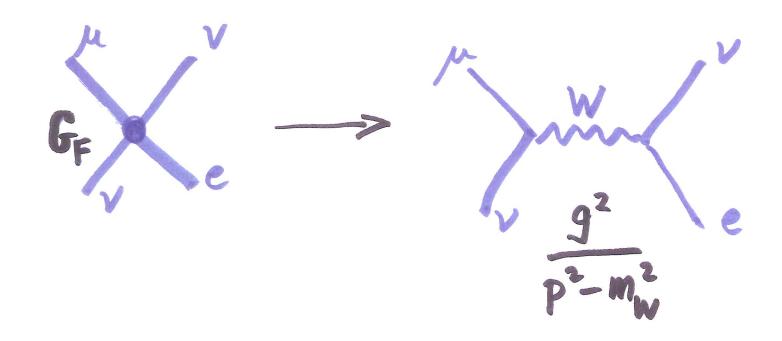

Technical Natural ness, the SM & New Physics M. Schmaltz B.U.

- o technical naturalness
- · BSM effective theory: Itiggs physics
- o relaxation

The Standard Model is now complete, ready for the t-shirt

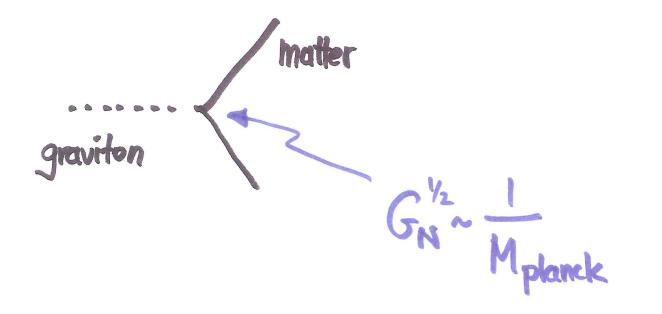
- Q: is the future of particle physics in the 3rd and 4th decimal place? i.e. is measuring the SM parameters more precisely all that is left to do?
- Q: or are there hunds in the SM that there is new physics to explore (experimentally)?

example: Fermi theory of weak interactions


1250 GeV)2

was incomplete,

predicted non-unitary


scattering for $E_{cm} \gg 250 \, GeV$

weak interactions

lesson: downstairs "masses are a sign of new physics

any such signs in the SM?

=> expect (must have!) new physics at the Planck scale.

any other hint?

let's do some dimensional analysis $t_1=c=1$

Locality: can expand & in power series in $\phi, \psi, \partial_{\mu}$

$$Z = c_0 M^4 + c_2 M^2 H^4 H + M Z_3 + Z_4 + Z_5 + Z_6 + ...$$

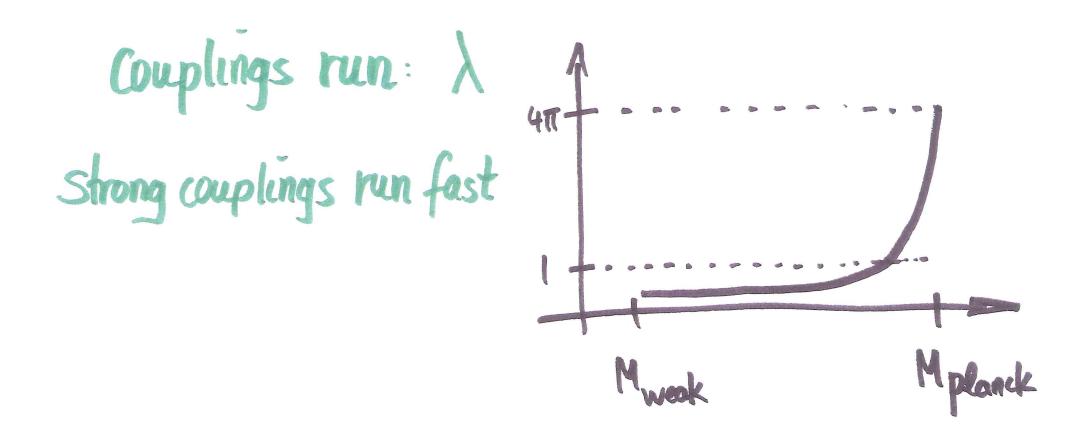
mass dimensions:
$$[\partial_{x}] = 1$$
 $[\mathcal{L}] = 4$ $[\Phi] = 1$ $[\Psi] = 3/2$ $[M] = 1$ some UV mass scale

Examine dimensionless couplings first 24

$$\mathcal{L}_{4}^{\text{toy}} \sim (\partial \phi)^{2} + \lambda^{2} \phi^{4} + \overline{\psi} \delta \psi + \lambda_{4} \phi \overline{\psi} \psi$$

What is the theoretically natural/expected size for the couplings λ , λ_t ?

(at the weak scale)


an upper-bound - strong coupling

Amplitude (2->2) ~
$$\times$$
 + \times + ...

~ $\lambda^2 \left(1 + \frac{\lambda^2}{16\pi^2} + ...\right)$

for $\lambda \gtrsim 4\pi$ loops are as important as trees

 \Rightarrow strong coupling, Ly useless \Rightarrow $\lambda < 411$

unless we happen to be near strong coupling expect $\lambda \lesssim O(1)$

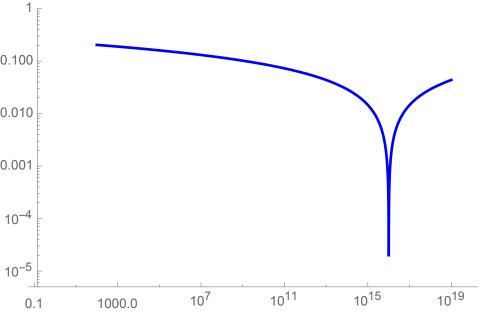
in the SM; biggest couplings @ Mweak

$$\lambda_{t} \approx 1$$
 $\lambda_{H} \approx \frac{1}{3}$

$$g_s \approx 1$$
 $g \approx 0.6$ $g' \approx 0.4$

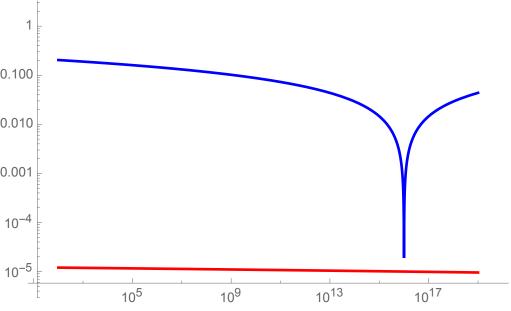
very consistent with natural expectation,

mo evidence for strong coupling mearby (i.e. < 10 TeV)


is there also a natural lower bound?

top loop correction to λ_H :

$$\int_{AH}^{2} \sim \frac{\lambda_{t}}{16\pi^{2}} \log(\frac{M_{1}}{M_{2}})$$


⇒
$$\lambda_{H} \gtrsim \frac{\lambda_{t}}{4\pi} \sqrt{\log^{3}}$$

unless there is a concelation

What about $\lambda_u \sim 10^{-5}$ 7 loop corrections to lu H.... Jhu~ hu 95 169 (M1)

Small, becouse proportional to lu

How are the two cases different?

Technical Naturalness: ('t Hooft) a coupling is technically natural if setting it to zero leads to a new symmetry of the theory example lu:

 $\lambda_u Q H U^c$ Symmetry $u^c \rightarrow e^{i\theta} u^c$ only broken by λ_u

 \Rightarrow any diagram which generales the coupling λ_u must be proportional to λ_u

technically natural.

$$\lambda (H^+H)^2$$

does not break any symmetry that isn't broken elsewhere in the Lagrangian

=> not technically natural

Small couplings are "stronge" either way but there is an important difference

a different t.n. why is λ so small? question: not t.n. why is λ so small exactly at Mweek?

for a technically natural coupling the mechanism which explains smallness can be in the far UV

in the case without · · not t.n. tech nat. the mechanism must be un some W MW the IR mechanism, not > accessible to occessible experiment ? a coupling which is not tech. nat. is good news for experiment.

in Ly all couplings are tech. nat. @ of N.P.

no sign nearby.

Aquarks, Leptons chiral symmetry gauge Symmetry 95,9,9'

Higgs 0.1 no new symmetry in $\lambda_{H} \rightarrow 0$ limit but AH has natural size in SM δλ Higgs ~ 0.1

the rest of the SM Lagrangian...

CoM⁴ +
$$C_2M^2H^4H + \mathcal{L}_4 + \frac{\mathcal{L}_5}{M} + \frac{\mathcal{L}_6}{M^2} + \cdots$$
cosmo (higgs mass tomorrow)

tomst. term

expected size of c_i ? $c_i \sim O(i)$ not keh. nat $\lesssim O(i)$ tech. nat

M is the UV scale at which & is determined

is m2 44 tech. nat?

Symmetry: H->H+const can forbid m2H4H

but: broken body by other couplings $\lambda_t Q H U^c$ $\lambda^z H^4$ $9^z W_w M^z$:

> not tech.not. >> m << M requires N.P. mearby

Sorry: Let's study this in detail because it's important and people get it wrong

example, free fields:

 $(\partial \phi)^2 - m^2 \phi^2 + \overline{4} \overline{3} \overline{4} + M \overline{4} \overline{4}$ M>>m

m is tech. nat. Symmetry: $\phi \rightarrow \phi + const.$

shift Symmetry only broken by m.

=> if m<< M by some UV mechanism it remains small. (obvious)

interactions:

$$(\partial \phi)^2 - m^2 \phi^2 + \Psi \partial \Psi + M \Psi \Psi + \lambda \phi \Psi \Psi$$

 λ breaks $\phi \rightarrow \phi + const$ symmetry $\Rightarrow m$ not tech. not.

$$\int M^2 \sim ... \circ O \sim \frac{\lambda^2}{16\pi^2} (\Lambda^2 + M^2) \sim (\frac{\lambda M}{4\pi})^2 + 09$$

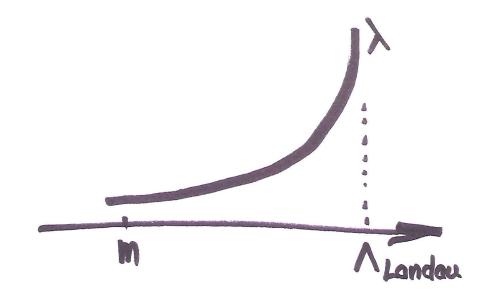
renormalization

=0 in MS.

 $\Rightarrow m \leq \frac{\lambda}{4\pi}M$ not natural

how about scale invariance symmetry?

$$\phi \rightarrow s \phi(sx)$$
 $\psi \rightarrow s^{3/2} \psi(sx)$
 $\psi \rightarrow s^{3/2} \psi(x)$
 $\psi \rightarrow s^{3/2} \psi(x)$


M=0 not a new symmetry because of M

what if
$$M=0$$
? $(\partial \phi)^2 - m^2 \phi^2 + \lambda \phi \overline{+} \psi + \overline{+} \psi \psi$
inv. $\frac{1}{3^2}$ inv. $\frac{1}{3^2}$ inv.

"looks" OK. m=>0 enhanced symmetry in classical theory

in QFT: λ(M_M) runs ⇒ breaks scale invariance

mce 1 not natural

How do I see that in a calculation?

$$-\cdots \bigcirc \cdots \sim \frac{\lambda^2}{16\pi^2} \bigwedge^2 = 0$$

= 0 in MS to all orders in pert. theory

a wrong calculation! theory changes at Λ_{Landon} \Rightarrow not correct to integrate $\int_{0}^{\infty} d\frac{4\cdot\epsilon}{P} \frac{1}{P^2} = 0$

calculation must include non-perturbative physics

en gluon masskess to all orders

correct answer: non-perturbative physics removes gluons

MG ~ Macd

in our toy: $Sm^2 \sim --- \text{Handau}$ non-perturb.

Summary: really need scale invariant QFT for a small scalar mass to be technically natural.

but then M is the only scale in the theory and natural ness is obvious!