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Loop computation

• Box, Triangle, Bubble and Tadpole are known 
scalar integrals	



• Loop computation = find the coefficients	



• Unitarity	



• Multiple cuts	



• Tensor reduction (OPP)

Prelims History Present

Tensor Reduction 2

A1−loop =
∑

i

di Boxi +
∑

i

ci Trianglei +
∑

i

bi Bubblei

+
∑

i

ai Tadpolei + R

where

Tadpolei =
∫

dnq̄ 1

D̄0
Bubblei =

∫

dnq̄ 1

D̄0D̄1

Trianglei =
∫

dnq̄ 1

D̄0D̄1D̄2

Boxi =
∫

dnq̄ 1

D̄0D̄1D̄2D̄3

analytic work is necessary

Roberto Pittau Automatizing 1-loop multi-leg calculations for LHC (and ILC)
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• Goal : Automate the one-loop computation 
for BSM models 	



• Required ingredients : 	



• Tree-level vertices	



• R2 vertices	



• UV counterterms vertices

BSM NLO : model

Already for any tree-

level computation
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FeynRules

cp3

Introduction
From FeynRules to FeynArts so far

The new FeynRules interface to FeynArts
Conclusion

Welcome in the FeynRules era

C. Degrande The new FeynRules interface

Interfaces coming with current public version 

© C. Degrande

FeynRules in a nutshell

Donnerstag, 14. Oktober 2010

Input : model.fr

Output : vertices
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FeynRules outputs

cp3

Introduction
From FeynRules to FeynArts so far

The new FeynRules interface to FeynArts
Conclusion

For each tool, the right input

C. Degrande The new FeynRules interface

CalcHep / CompHep

FeynArts / FormCalc

FeynRules in a nutshell

Donnerstag, 14. Oktober 2010

FeynRules outputs  
can be used 

directly by event 
generators

UFO : output with the 
full information	


used by several 

generators

(   )
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• Goal : Automate the one-loop computation 
for BSM models 	



• Required ingredients : 	



• Tree-level vertices	



• R2 vertices	



• UV counterterms vertices

New, computed by 

NLOCT and FeynRules

Ingredients
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R2

Finite set of vertices that can be computed once 
for each model

What are the R2 rational terms?

Ā (q̄) =
1

(2⇥)4

�
dd q̄

N̄ (q̄)
D̄0D̄1 . . . D̄m�1

, D̄i = (q̄ + pi)
2 � m2

i

N̄ (q̄) = N (q) + ⇥N (q̃, q, �)

where X̄ lives in d dimension, X in 4, ⇥X in �.

R2 definition

R2 ⇥ lim
�⇥0

1
(2⇥)4

�
dd q̄

⇥N (q̃, q, �)
D̄0D̄1 . . . D̄m�1

Finite (⇤ 4 legs) set of vertices computed once for all!
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d 4 ε

in MadLoop [4] available in the MadGraph5 aMC@NLO framework leading to a complete
automated tool for NLO computation. So far only the SM model has been implemented despite
that MadLoop is based on MadGraph5[5] for which many BSM models are available. As a
matter of fact, the evaluation of the loop corrections requires two extra ingredients that so far
have been added by hand in the model. The first one is the counterterms introduced by the
renormalization procedure to absorb all the UV divergences arising at the one-loop level. While
the divergences can be extracted from the scalar integrals, any renormalization scheme with a
non-trivial finite part in the counterterms requires a careful redefinition of the fields and of the
independent parameters of the model and the resolution of the renormalization conditions. The
second missing element depends on the actual method used to perform the tensor decomposition
of the loop amplitudes. In the case of OPP, it is a part of the rational term. In d dimensions,
any one-loop amplitude can be written as

A (q) =
1

(2⇡)4

Z
ddq

N (q)

D0D1 . . . Dm�1
, (2)

with the propagator denominators given by Di ⌘ (q + pi)
2 �m2

i and where mi are the masses
of the particles in the loop, q is the loop momentum and pi are linear combinations of external
momenta. All the quantities written with a bar live in d dimensions and can therefore be split in
a four dimensional part x and a d�4 dimensional part x̃ as follow x ⌘ x+ x̃. Rational terms are
finite contributions generated by the part of the integrand linear in d � 4. One then organizes
the rational part in two terms, R1 and R2. The rational term R1 is due to the d� 4 component
of the integrand denominators and can be computed as the four-dimensional piece but using a
di↵erent set of scalar integrals [6]. The R2 terms are defined as the finite part due to the d� 4
component of the numerator

R2 ⌘ lim
✏�0

1

(2⇡)4

Z
ddq

Ñ (q̃, q, ✏)

D0D1 . . . Dm�1
, (3)

where ✏ is defined by d ⌘ 4 � 2✏. We use here the ’t Hooft-Veltman scheme [7] such that all
the quantities in the loop, i.e. the loop momentum, the metric and the Dirac matrices live in d
dimensions:

⌘µ ⌫⌘µ ⌫ = d, (4)

�µ�µ = d 1, (5)

where 1 is the identity matrix in Dirac space. The external momenta and polarization vectors
have only four dimensional components. The Dirac matrices in d dimensions �u are chosen to
anti-commute with �5 [8, 9, 10]. Therefore, the cyclic property of Dirac trace has to be dropped
to avoid algebraic inconsistency. The result of the evaluation of the integral in (3) is a set of
process independent Feynman rules. As a consequence, they should only be computed once for
each model. The R2 term are the second missing ingredient as they had to be computed so far by
hand for each model. The R2 terms are known for the full SM [11][12] and for QCD corrections
to the MSSM [13]. A package for the automatic computation of the R2 terms for the SM has
also been developed [14].

The purpose of this paper is to show that the procedure of determining the UV counterterms
and the R2 terms can be automated for any Lagrangian. The computation of the missing ele-
ments is done by three Mathematica packages, FeynRules [15], NLOCT and FeynArts [16].
NLOCT is a completely new package, new functionalities have been added to FeynRules to
renormalize models and output the NLO vertices in the UFO format [17] while FeynArts has
not been altered. The only requirement is that the model should be written in the Feynman
gauge. At this stage, the package is restricted to renormalizable theories. Renormalizability
is here understood strictly and not order by order like for e↵ective field theories. Namely, the
dimension of the operators in the Lagrangian should be equal to or lower than four. Although
the R2 terms are not always required, the UV counterterms are needed for any one-loop com-
putation. Therefore, the automatically generated models can be used to provide the necessary

2

Needed by Madgraph5_aMC@NLO (tool-dep.)
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R1

R1

q̃2

d, c, b, a

n R1

R1

q̃2 d, c, b

q̃2

m2
i → m2

i − q̃2 .

n

n

q̃2

q̃2 d, c, b

∫

dnq̄
q̃2

D̄iD̄j

= −
iπ2

2

[

m2
i + m2

j −
(pi − pj)2

3

]

+ O(ϵ) ,

∫

dnq̄
q̃2

D̄iD̄jD̄k

= −
iπ2

2
+ O(ϵ) ,

∫

dnq̄
q̃4

D̄iD̄jD̄kD̄l

= −
iπ2

6
+ O(ϵ) .

b(ij; q̃2) = b(ij) + q̃2b(2)(ij) ,

c(ijk; q̃2) = c(ijk) + q̃2c(2)(ijk) .

Z̄i

Like for the 4 dimensional part but with a different set of 
integrals

Due to the ℇ dimensional parts of the denominators 

Only R = R1+R2 is gauge invariant Check
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UV
What are the UV counterterms?

Ā (q̄) =
1

(2⇥)4

⌥
dd q̄

N̄ (q̄)
D̄0D̄1 . . . D̄m�1

= K
1
�
+O

⇤
�0
⌅

m ⇥ m
⇧

1 + cm
1
�

⌃
, � ⇥

⇧
1 + c�

1
�

⌃
�, g ⇥ g

⇧
1 + cg

1
�

⌃

. . . . . . = 01
� +O

�
�0⇥

Finite (� 4 legs) set of vertices computed once for all!

C. Degrande (UIUC) 5 October 2012 21 / 30

What are the UV counterterms?

Ā (q̄) =
1

(2⇥)4

⌥
dd q̄

N̄ (q̄)
D̄0D̄1 . . . D̄m�1

= K
1
�
+O

⇤
�0
⌅

m ⇥ m
⇧

1 + cm
1
�

⌃
, � ⇥

⇧
1 + c�

1
�

⌃
�, g ⇥ g

⇧
1 + cg

1
�

⌃

. . . . . . = 01
� +O

�
�0⇥

Finite (� 4 legs) set of vertices computed once for all!
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Finite set of vertices that can be computed once 
for each model

Relations fixed by the Lagrangian (finite part)

On-shell renormalization
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Renormalization
External parameters

one-loop ingredients for other NLO tools than MadGraph5 aMC@NLO like GoSam [18] for
example which is already using the UFO format. As an explicit example, we consider the Two
Higgs Doublet Model (2DHM). The 2HDM is a simple but important extension of the SM since
it provides a well defined model to search for extra scalar particles.

The paper is organized as follows. The second section focuses on the renormalization of the
Lagrangian and introduces the renormalization conditions for the on-shell scheme. This scheme
is easily extended to complex mass scheme to provide an appropriate treatment of the widths.
The main advantage of those schemes is to avoid the evaluation of the loops on the external legs
and it is used, for example, in MadLoop to make the computation faster. The third section
discusses the algorithm for the computation of the counterterms from the amplitudes. This
section ends with the validation of the algorithm. The 2HDM is briefly introduced in Sect. 4 to
fix the notation. The R2 and UV counterterm vertices for the 2HDM are given in Sect. 5 and 6
respectively. Finally, the conclusion is given in the last section.

2 Renormalization

2.1 The renormalization constants

In dimensional regularization UV-divergences appear as poles in 1/✏ where d ⌘ 4 � 2✏. In a
renormalizable theory, they can absorbed by a redefinition of the free parameters and of the
fields

x0 � x+ �x,

�0 � (1 +
1

2
�Z��)�+

X

�

1

2
�Z���, (6)

where x is an external parameter and � and � are fields with the same quantum numbers, the
bare quantities are denoted by an additional zero subscript compared to the renormalized fields or
parameters, the renormalization constant are preceded by a �. For the fermions, each chirality is
renormalized independently. The external parameters are independent parameters which values
should be fixed by experiments. On the contrary, internal parameters are functions of the external
parameters. Internal parameters are also renormalized. However, their renormalization does not
require the introduction of new renormalization constants and is fixed by their dependence on
the external parameters. The same self renormalization constants Z�� are used for both the
fields and their hermitian conjugates and not its conjugate as required by the complex mass
scheme [19]. Their imaginary parts would otherwise disappear form the hermitian Lagrangian.
For example, the kinetic term of a scalar has an imaginary part if

�0 � (1 + 1
2�Z��)�

�†
0 � (1 + 1

2�Z��)�†

�
) @µ�0@µ�

†
0 � (1 + �Z��)@

µ�@µ�
† (7)

to absorb the imaginary part coming from the corresponding term of the two point loop ampli-
tude. On the contrary, they would be no imaginary part if the conjugated field is renormalized
with the conjugate of the renormalization constant, i.e.

�0 � (1 + 1
2�Z��)�

�†
0 � (1 + 1

2�Z
⇤
��)�

†

�
) @µ�0@µ�

†
0 � (1 + <�Z��)@

µ�@µ�
†. (8)

In the on-shell scheme, those constants are real and therefore also identical for both the fields
and their conjugates. Similarly, external parameters in FeynRules are real and therefore renor-
malized by the same constants as their conjugates. Again, this is valid for both schemes even if
the external parameters have complex renormalization constants as in the complex mass scheme.
The renormalization is therefore identical for those two renormalization schemes but only the
bare Lagrangian is hermitian in the complex mass scheme since the renormalization constants
are complex in this scheme. The bare Lagrangian can also be split into the renormalized one

3

On-shell scheme:

Renormalized mass = Physical mass

Two-point function vanishes on-shell (No external 	


bubbles)
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• Goal : Automate the one-loop computation 
for BSM models 	



• Required ingredients : 	



• Tree-level vertices	



• R2 vertices	



• UV counterterms vertices	



• Result : UFO at NLO

Ingredients

Done for renomalizable models (<=dim4)
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EFT@NLO
• EFT are renormalizable order by order	



!

!

!

!

• Max dim of CT vertices depends on the model (FF, 
VV, SS, FFV, FFS, VVV, VVS, VSS, SSS, VVVV, VVSS, 
SSSS,...?)

H†HGµ�G
µ�

Q̄LH�µ�Gµ�tR

Need EFT not ano. vertices !
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!

• Higher powers of the loop momentum in the 
vertices	



!

!

!

!
!

• Higher powers of the loop momentum in the 
numerators of the integral

EFT@NLO

8

WWWW WWZZ ZZZZ WWAZ WWAA ZZZA ZZAA ZAAA AAAA
OS,0, OS,1 X X X

OM,0, OM,1,OM,6 ,OM,7 X X X X X X X
OM,2 ,OM,3, OM,4 ,OM,5 X X X X X X

OT,0 ,OT,1 ,OT,2 X X X X X X X X X
OT,5 ,OT,6 ,OT,7 X X X X X X X X

OT,8 ,OT,9 X X X X X

TABLE II: Quartic vertices modified by each dimension-8 operator are marked with X.

D. Comparison with the anomalous coupling approach and the LEP convention for aQGCs

The anomalous couplings approach is based on the Lagrangian [9]

L =igWWV

✓
gV1 (W+

µ⌫W
�µ �W+µW�

µ⌫)V
⌫ + V W

+
µ W�

⌫ V µ⌫ +
�V

M2
W

W ⌫+
µ W�⇢

⌫ V µ
⇢

+igV4 W+
µ W�

⌫ (@µV ⌫ + @⌫V µ)� igV5 ✏µ⌫⇢�(W+
µ @⇢W

�

⌫ � @⇢W
+
µ W�

⌫ )V�

+̃V W
+
µ W�

⌫ Ṽ µ⌫ +
�̃V

m2
W

W ⌫+
µ W�⇢

⌫ Ṽ µ
⇢

!
,

(32)

where V = �, Z; W±

µ⌫ = @µW±

⌫ � @⌫W±

µ , Vµ⌫ = @µV⌫ � @⌫Vµ, gWW� = �e and gWWZ = �e cot ✓W .
The first three terms of Eq. 32 are C and P invariant while the remaining four terms violate C and/or
P . Electromagnetic gauge invariance requires that g�1 = 1 and g�4 = g�5 = 0. Finally there are five in-
dependent C- and P -conserving parameters: gZ1 ,� ,Z ,�� ,�Z ; and six C and/or P violating parameters:
gZ4 , g

Z
5 , ̃� , ̃Z , �̃� , �̃Z . This Lagrangian is not the most generic one as extra derivatives can be added in all

the operators. Furthermore, there is no reason to remove those extra terms since they are not suppressed
by ⇤ but by MW .

The e↵ective field theory approach described in the previous section allows one to calculate those param-
eters in terms of the coe�cients of the five dimension-six operators relevant for TGCs, i.e. in terms of the
EFT coe�cients cWWW , cW , cB , cW̃WW and cW̃ . One finds for the anomalous TGC parameters[10, 11]:

gZ1 = 1 + cW
m2

Z

2⇤2
(33)

� = 1 + (cW + cB)
m2

W

2⇤2
(34)

Z = 1 + (cW � cB tan2 ✓W )
m2

W

2⇤2
(35)

�� = �Z = cWWW
3g2m2

W

2⇤2
(36)

gV4 = gV5 = 0 (37)

̃� = cW̃
m2

W

2⇤2
(38)

̃Z = �cW̃ tan2 ✓W
m2

W

2⇤2
(39)

�̃� = �̃Z = cW̃WW

3g2m2
W

2⇤2
(40)

Defining �gZ1 = gZ1 � 1, ��,Z = �,Z � 1, the relation [10]

�gZ1 = �Z + tan2 ✓W�� (41)
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• Basis versus full set

Q̄LH�µ�Gµ�tR Q̄LH�µ��D
µD�tR

1

⇥

�
ap2 + b�µpµ + cm

⇥

EFT@NLO

• Needed to know the running
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EFT@NLO

For QCD



C. Degrande

EW gauge boson interations 
at NLO in QCD

Recipe = SM with NLO QCD (i.e. tree-level vertices, R2 and UV) + 
LO(tree-level only) EW dim6

No QCD corrections to EW 

gauge boson interactions
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EW gauge boson interations 
at NLO in QED

• FR/MG5_aMC are starting NLO in  QED for 
the SM and renomalizable (dim<=4) BSM	



• All the issues of NLO for EFT	



• αEW = 0.01
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Concluding remarks

• NLO in QCD for EW gauge boson interactions : Done 
(Trivial)	



• NLO in QED for EW gauge boson interactions : 	



• Not for the near future	



• Expected to be small


