Adam Falkowski

EFT Parametrization of Anomalous Couplings

CEN, 11 December 2015

LYC EWWG di-boson discussion on aGC for run-2

Effective Theory Approach to BSM

Basic assumptions

- New physics scale \wedge separated from EW scale $v, \wedge \gg v$
- Linearly realized $S U(3) \times S U(2) \times U(1)$ local symmetry spontaneously broken by VEV of Higgs doublet field

EFT Lagrangian beyond the SM expanded in operator dimension D, or, equivalently, in

Standard Model, operators up to $D=4$

Lepton number violating, hence too small to be probed at LHC

By assumption, subleading to $D=6$

Cutoff scale of EFT

Appear when starting from L-conserving BSM, and integrating out heavy particles with $\mathrm{m} \approx \Lambda$

For $D=6$ Lagrangian several complete non-redundant set of operators
(so-called basis) proposed in the literature

Hagiwara et al (1993)

Grządkowski et al. 1008.4884

HISZ
basis
Warsaw Basis

$\mathrm{D}=6$ Bases

SILH basis

- All bases are equivalent, but some may be more equivalent convenient for specific applications
- Physics description (EWPT, Higgs, RG running) in any of these bases contains the same information, provided all operators contributing to that process are taken into account

Some (not all independent)

$\mathrm{D}=6$ operators that yield

triple gauge interaction vertices:

$$
\begin{aligned}
O_{W B} & =g_{L} g_{Y} H^{\dagger} \sigma^{i} H W_{\mu \nu}^{i} B_{\mu \nu} \\
O_{W} & =\frac{i}{2} g_{L}\left(H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H\right) D_{\nu} W_{\mu \nu}^{i} \\
O_{H W} & =i g_{L}\left(D_{\mu} H^{\dagger} \sigma^{i} D_{\nu} H\right) W_{\mu \nu}^{i} \\
O_{H B} & =i g_{Y}\left(D_{\mu} H^{\dagger} D_{\nu} H\right) B_{\mu \nu} \\
O_{W W} & =g_{L}^{2} H^{\dagger} H W_{\mu \nu}^{i} W_{\mu \nu}^{i} \\
O_{2 W} & =D_{\mu} W_{\mu \nu}^{i} D_{\rho} W_{\rho \nu}^{i} \\
O_{3 W} & =g_{L}^{3} \epsilon^{i j k} W_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k}
\end{aligned}
$$

- Several dimension-6 operators induce new contributions to triple gauge couplings of electroweak gauge bosons in the effective Lagrangian
- Thus, aTGCs are $O\left(1 / \wedge^{\wedge} 2\right)$ in the EFT expansion
- However, some care is needed to properly take into account their contribution to physical processes

$$
\mathcal{L}_{\mathrm{tgc}}^{D=6}=i e\left[\delta \kappa_{\gamma} A_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}+\tilde{\kappa}_{\gamma} \tilde{A}_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}\right]
$$

$$
+i g_{L} c_{\theta}\left[\delta g_{1, z}\left(W_{\mu \nu}^{+} W_{\mu}^{-}-W_{\mu \nu}^{-} W_{\mu}^{+}\right) Z_{\nu}+\delta \kappa_{z} Z_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}+\tilde{\kappa}_{z} \tilde{Z}_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}\right]
$$

$$
+i \frac{e}{m_{W}^{2}}\left[\lambda_{\gamma} W_{\mu \nu}^{+} W_{\nu \rho}^{-} A_{\rho \mu}+\tilde{\lambda}_{\gamma} W_{\mu \nu}^{+} W_{\nu \rho}^{-} \tilde{A}_{\rho \mu}\right]+i \frac{g_{L} c_{\theta}}{m_{W}^{2}}\left[\lambda_{z} W_{\mu \nu}^{+} W_{\nu \rho}^{-} Z_{\rho \mu}+\tilde{\lambda}_{z} W_{\mu \nu}^{+} W_{\nu \rho}^{-} \tilde{Z}_{\rho \mu}\right]
$$

Operators to Observables

Difficulties in the presence of $D=6$ operators

$$
\begin{aligned}
& \frac{c_{T}}{v^{2}} O_{T}=\frac{c_{T}}{v^{2}}\left(H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)^{2} \\
& \rightarrow-c_{T} \frac{\left(g_{L}^{2}+g_{Y}^{2}\right) v^{2}}{4} Z_{\mu} Z_{\mu} \\
& \Rightarrow m_{Z}^{2}=\frac{\left(g_{L}^{2}+g_{Y}^{2}\right) v^{2}}{4}\left(1-2 c_{T}\right) \\
& \frac{c_{W W}}{v^{2}} O_{W W}=\frac{c_{W W}}{v^{2}} g_{L}^{2} H^{\dagger} H W_{\mu \nu}^{i} W_{\mu \nu}^{i} \\
& \text { e.g. } \quad \rightarrow \frac{c_{W W} g_{L}^{2}}{2} W_{\mu \nu}^{i} W_{\mu \nu}^{i}
\end{aligned}
$$

- Introduce non-standard higherderivative kinetic terms
- Introduce kinetic mixing between photon and Z boson

$$
\begin{aligned}
& \frac{c_{W B}}{v^{2}} O_{W B}=\frac{c_{W B}}{v^{2}} g_{L} g_{Y} H^{\dagger} \sigma^{i} H W_{\mu \nu}^{i} B_{\mu \nu} \\
& \text { e.g. } \quad \rightarrow-c_{W B} \frac{g_{L} g_{Y}}{2} W_{\mu \nu}^{3} B_{\mu \nu}
\end{aligned}
$$

To simplify calculating physical predictions, one can map the theory with dimension-6 operators onto the mass eigenstate Lagrangian

- EFT Lagrangian with $D=6$ operators can be recast in terms of mass eigenstates after electroweak symmetry breaking (photon,W,Z,Higgs boson, top). $\mathrm{SU}(3) \times S U(2) \times U(1)$ is not manifest but hidden in relations between different couplings
- Feature \#1: In the tree-level Lagrangian, all kinetic terms are canonically normalized, and there's no kinetic mixing between mass eigenstates. In particular, all oblique corrections from new physics are zero, except for a correction to the W boson mass

$$
\mathcal{L} \supset e A_{\mu}\left(T_{f}^{3}+Y_{f}\right) \bar{f} \gamma_{\mu} f+g_{s} G_{\mu}^{a} \overline{\bar{q}} \gamma_{\mu} T^{a} q
$$

$$
\mathcal{L}_{\text {kin }}=-\frac{1}{2} W_{\mu \nu}^{+} W_{\mu \nu}^{-}-\frac{1}{4} Z_{\mu \nu} Z_{\mu \nu}-\frac{1}{4} A_{\mu \nu} A_{\mu \nu}+(1+2 \delta m) m_{W}^{2} W_{\mu}^{+} W_{\mu}^{-}+\frac{m_{Z}^{2}}{2} Z_{\mu} Z_{\mu}
$$

- Feature \#2: Tree-level relation between the couplings in the Lagrangian and SM input observables is the same as in the SM.
- Feature \#3: 2 more technical requirements concerning Higgs (self-)interactions
- Features \#1-3 can always be obtained without any loss of
 generality, starting from any Lagrangian with $D=6$ operators, using integration by parts, fields and couplings redefinition

Effective Lagrangian: Z and W couplings to fermions

- By construction, photon and gluon couplings as in the SM. Only W and Z couplings are affected

$$
\begin{aligned}
& \mathcal{L} \supset \frac{g_{L} g_{Y}}{\sqrt{g_{L}^{2}+g_{Y}^{2}}} Q_{f} A_{\mu} \bar{f} \gamma_{\mu} f \\
& \quad+g_{s} G_{\mu}^{a} \bar{q} \gamma_{\mu} T^{a} q
\end{aligned}
$$

- Effects of dimension-6 operators are parametrized by a set of vertex corrections

$$
\begin{aligned}
\mathcal{L}_{v f f} & =\frac{g_{L}}{\sqrt{2}}\left(W_{\mu}^{+} \bar{u} \bar{\sigma}_{\mu}\left(V_{\mathrm{CKM}}+\delta g_{L}^{W q}\right) d+W_{\mu}^{+} u^{c} \sigma_{\mu} \delta g_{R}^{W q} \bar{d}^{c}+W_{\mu}^{+} \bar{\nu} \bar{\sigma}_{\mu}\left(I+\delta g_{L}^{W \ell}\right) e+\text { h.c. }\right) \\
& +\sqrt{g_{L}^{2}+g_{Y}^{2}} Z_{\mu}\left[\sum_{f \in u, d, e, \nu} \bar{f} \bar{\sigma}_{\mu}\left(T_{f}^{3}-s_{\theta}^{2} Q_{f}+\delta g_{L}^{Z f}\right) f+\sum_{f^{c} \in u^{c}, d^{c}, e^{c}} f^{c} \sigma_{\mu}\left(-s_{\theta}^{2} Q_{f}+\delta g_{R}^{Z f}\right) \bar{f}^{c}\right]
\end{aligned}
$$

Z and W couplings to fermions

Yukawa	
$\left[O_{e}\right]_{I J}$	$-\left(H^{\dagger} H-\frac{v^{2}}{2}\right) \frac{\sqrt{m_{I} m_{J}}}{v} e_{I}^{c} H^{\dagger} \ell_{J}$
$\left[O_{u}\right]_{I J}$	$-\left(H^{\dagger} H-\frac{v^{2}}{2}\right) \frac{\sqrt{m_{I} m_{J}}}{v} u_{I}^{c} \widetilde{H}^{\dagger} q_{J}$
$\left[O_{d}\right]_{I J}$	$-\left(H^{\dagger} H-\frac{v^{2}}{2}\right) \frac{\sqrt{m_{I} m_{J}}}{v} d_{I}^{c} H^{\dagger} q_{J}$

Vertex			Dipole	
$\left[O_{H e}\right]_{I J}$	$i \bar{\ell}_{I} \bar{\sigma}_{\mu} \ell_{J} H^{\dagger} \overleftrightarrow{D_{\mu}} H$		$\left[O_{e W}\right]_{I J}$	$\frac{\sqrt{m_{I} m_{J}}}{v} e_{I}^{c} \sigma_{\mu \nu} H^{\dagger} \sigma^{i} \ell_{J} W_{\mu \nu}^{i}$
$\left[O_{H e}^{\prime}\right]_{I J}$	$i \bar{\ell}_{I} \sigma^{i} \bar{\sigma}_{\mu} \ell_{J} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H$		$\left[O_{e B}\right]_{I J}$	$\frac{\sqrt{m_{I} m_{J}}}{v} e_{I}^{c} \sigma_{\mu \nu} H^{\dagger} \ell_{J} B_{\mu \nu}$
$\left[O_{H e}\right]_{I J}$	$i e_{I}^{c} \sigma_{\mu} \bar{e}_{J}^{c} H^{\dagger} \overleftrightarrow{D_{\mu}} H$		$\left[O_{u G}\right]_{I J}$	$\frac{\sqrt{m_{I} m_{J}}}{v} u_{I}^{c} \sigma_{\mu \nu} T^{a} \widetilde{H}^{\dagger} q_{J} G_{\mu \nu}^{a}$
$\left[O_{H q}\right]_{I J}$	$i \bar{q}_{I} \bar{\sigma}_{\mu} q_{J} H^{\dagger} \overleftrightarrow{D_{\mu}} H$		$\left[O_{u W}\right]_{I J}$	$\frac{\sqrt{m_{I} m_{J}}}{v} u_{I}^{c} \sigma_{\mu \nu} \widetilde{H}^{\dagger} \sigma^{i} q_{J} W_{\mu \nu}^{i}$
$\left[O_{H q}^{\prime}\right]_{I J}$	$i \bar{q}_{I} \sigma^{\sigma} \bar{\sigma}_{\mu} q_{J} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H$		$\left[O_{u B}\right]_{I J}$	$\frac{\sqrt{m_{I} m_{J}}}{v} u_{I}^{c} \sigma_{\mu \nu} \widetilde{H}^{\dagger} q_{J} B_{\mu \nu}$
$\left[O_{H u}\right]_{I J}$	$i u_{I}^{c} \sigma_{\mu} \bar{u}_{J}^{c} H^{\dagger} \overleftrightarrow{D_{\mu}} H$		$\left[O_{d G}\right]_{I J}$	$\frac{\sqrt{m_{I} m_{J}}}{v} d_{I}^{c} \sigma_{\mu \nu} T^{a} H^{\dagger} q_{J} G_{\mu \nu}^{a}$
$\left[O_{H d}\right]_{I J}$	$i d_{I}^{c} \sigma_{\mu} \bar{d}_{J}^{c} H^{\dagger} \overleftrightarrow{D_{\mu}} H$		$\left[O_{d W}\right]_{I J}$	$\frac{\sqrt{m_{I} m_{J}}}{v} d_{I}^{c} \sigma_{\mu \nu} \bar{H}^{\dagger} \sigma^{i} q_{J} W_{\mu \nu}^{i}$
$\left[O_{H u d}\right]_{I J}$	$i u_{I}^{c} \sigma_{\mu} \bar{d}_{J}^{c} \tilde{H}^{\dagger} D_{\mu} H$		$\left[O_{d B}\right]_{I J}$	$\frac{\sqrt{m_{I} m_{J}}}{v} d_{I}^{c} \sigma_{\mu \nu} H^{\dagger} q_{J} B_{\mu \nu}$

$\delta g_{L}^{Z \nu}=\delta g_{L}^{Z e}+\delta g_{L}^{W \ell}$
 $\delta g_{L}^{W q}=\delta g_{L}^{Z u} V_{\mathrm{CKM}}-V_{\mathrm{CKM}} \delta g_{L}^{Z d}$

$$
\begin{gathered}
\delta g_{L}^{W \ell}=c_{H \ell}^{\prime}+f(1 / 2,0)-f(-1 / 2,-1), \\
\delta g_{L}^{Z \nu}=\frac{1}{2} c_{H \ell}^{\prime}-\frac{1}{2} c_{H \ell}+f(1 / 2,0), \\
\delta g_{L}^{Z e}=-\frac{1}{2} c_{H \ell}^{\prime}-\frac{1}{2} c_{H \ell}+f(-1 / 2,-1), \\
\delta g_{R}^{Z e}=-\frac{1}{2} c_{H e}+f(0,-1), \\
\delta g_{L}^{W q}=c_{H q}^{\prime} V_{\mathrm{CKM}}+f(1 / 2,2 / 3)-f(-1 / 2,-1 / 3), \\
\delta g_{R}^{W q}=-\frac{1}{2} c_{H u d}, \\
\delta g_{L}^{Z u}= \\
\frac{1}{2} c_{H q}^{\prime}-\frac{1}{2} c_{H q}+f(1 / 2,2 / 3), \\
\delta g_{L}^{Z d}= \\
-\frac{1}{2} V_{\mathrm{CKM}}^{\dagger} c_{H q}^{\prime} V_{\mathrm{CKM}}-\frac{1}{2} V_{\mathrm{CKM}}^{\dagger} c_{H q} V_{\mathrm{CKM}}+f(-1 / 2,-1 / 3), \\
\delta g_{R}^{Z u}= \\
-\frac{1}{2} c_{H u}+f(0,2 / 3), \\
\delta g_{R}^{Z d}= \\
-\frac{1}{2} c_{H d}+f(0,-1 / 3), \\
\delta\left(T^{3}, Q\right)=I_{3}\left[-Q c_{W B} \frac{g^{2} g^{\prime 2}}{g^{2}-g^{\prime 2}}+\left(c_{T}-\delta v\right)\left(T^{3}+Q \frac{g^{\prime 2}}{g^{2}-g^{\prime 2}}\right)\right] \\
\delta m=\frac{\delta v=\left(\left[c_{H \ell}^{\prime}\right]_{11}+\left[c_{H \ell}^{\prime}\right]_{22}\right) / 2-\left[c_{\ell \ell}\right]_{1221} / 4}{g^{2}-g^{2}}\left[-g^{2} g^{2} c_{W B}+g^{2} c_{T}-g^{\prime 2} \delta v\right]
\end{gathered}
$$

After necessary redefinitions are done, CP-even TGCs take the usual form

$$
\begin{aligned}
\mathcal{L}_{\mathrm{tgc}} & =i e\left[\left(W_{\mu \nu}^{+} W_{\mu}^{-}-W_{\mu \nu}^{-} W_{\mu}^{+}\right) A_{\nu}+\left(1+\delta \kappa_{\gamma}\right) A_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}\right] \\
& +i g_{L} c_{\theta}\left[\left(1+\delta g_{1, z}\right)\left(W_{\mu \nu}^{+} W_{\mu}^{-}-W_{\mu \nu}^{-} W_{\mu}^{+}\right) Z_{\nu}+\left(1+\delta \kappa_{z}\right) Z_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}\right] \\
& +i \frac{e}{m_{W}^{2}} \lambda_{\gamma} W_{\mu \nu}^{+} W_{\nu \rho}^{-} A_{\rho \mu}+i \frac{g_{L} c_{\theta}}{m_{W}^{2}} \lambda_{z} W_{\mu \nu}^{+} W_{\nu \rho}^{-} Z_{\rho \mu}
\end{aligned}
$$

ATGCs related to Wilson coefficients of $\mathrm{D}=6$ operators in Warsaw and SILH basis by

$$
\begin{aligned}
\delta g_{1, z}= & \frac{g_{L}^{2}+g_{Y}^{2}}{g_{L}^{2}-g_{Y}^{2}}\left(-g_{Y}^{2} c_{W B}-\frac{g_{L}^{2}-g_{Y}^{2}}{4} c_{H W}-\frac{g_{L}^{2}}{4}\left(c_{W}+c_{2 W}\right)\right. \\
& \left.+c_{T}-\frac{g_{Y}^{2}}{4}\left(c_{B}+c_{2 B}\right)-\frac{1}{2}\left[c_{H \ell}^{\prime}\right]_{11}-\frac{1}{2}\left[c_{H \ell}^{\prime}\right]_{22}+\frac{1}{4}\left[c_{\ell \ell}\right]_{1221}\right) \frac{v^{2}}{\Lambda^{2}} \\
\delta \kappa_{\gamma}= & \frac{g_{L}^{2}}{4}\left(4 c_{W B}-c_{H W}-c_{H B}\right) \frac{v^{2}}{\Lambda^{2}} \\
\lambda_{z}= & \delta \kappa_{z}=\delta g_{1, z}-t_{\theta}^{2} \delta \kappa_{\gamma} \\
g_{L}^{4} c_{3 W} \frac{v^{2}}{\Lambda^{2}} & \lambda_{\gamma}=\lambda_{z}
\end{aligned}
$$

Basis-independent relations between aTGCs

Note that 2nd line in $\delta \mathrm{glz}$ are contributions from 4-fermion, vertex, Higgs, and 4-derivative gauge operators They enter indirectly via the rescaling necessary to arrive at the phenomenological effective Lagrangian !

$$
\begin{align*}
\frac{c_{T}}{v^{2}} O_{T} & =\frac{c_{T}}{v^{2}}\left(H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)^{2} \quad \text { e.g. } \\
& \rightarrow-c_{T} \frac{\left(g_{L}^{2}+g_{Y}^{2}\right) v^{2}}{4} Z_{\mu} Z_{\mu} \\
& \Rightarrow m_{Z}^{2}=\frac{\left(g_{L}^{2}+g_{Y}^{2}\right) v^{2}}{4}\left(1-2 c_{T}\right)
\end{align*}
$$

TGCs and Higgs synergy

SM predicts TGCs in terms of gauge couplings as consequence of SM gauge symmetry and renormalizability:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{TGC}}^{\mathrm{SM}} & =i e\left[A_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}+\left(W_{\mu \nu}^{+} W_{\mu}^{-}-W_{\mu \nu}^{-} W_{\mu}^{+}\right) A_{\nu}\right] \\
& +i g_{L} c_{\theta}\left[\left(W_{\mu \nu}^{+} W_{\mu}^{-}-W_{\mu \nu}^{-} W_{\mu}^{+}\right) Z_{\nu}+Z_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}\right]
\end{aligned}
$$

In EFT with $\mathrm{D}=6$ operators, new "anomalous" contributions to TGCs arise

$$
\begin{aligned}
\mathcal{L}_{\mathrm{tgc}}^{D=6} & =i e\left[\delta \kappa_{\gamma} A_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}+\tilde{\kappa}_{\gamma} \tilde{A}_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}\right] \\
& +i g_{L} c_{\theta}\left[\delta g_{1, z}\left(W_{\mu \nu}^{+} W_{\mu}^{-}-W_{\mu \nu}^{-} W_{\mu}^{+}\right) Z_{\nu}+\delta \kappa_{z} Z_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}+\tilde{\kappa}_{z} \tilde{Z}_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}\right] \\
& +i \frac{e}{m_{W}^{2}}\left[\lambda_{\gamma} W_{\mu \nu}^{+} W_{\nu \rho}^{-} A_{\rho \mu}+\tilde{\lambda}_{\gamma} W_{\mu \nu}^{+} W_{\nu \rho}^{-} \tilde{A}_{\rho \mu}\right]+i \frac{g_{L} c_{\theta}}{m_{W}^{2}}\left[\lambda_{z} W_{\mu \nu}^{+} W_{\nu \rho}^{-} Z_{\rho \mu}+\tilde{\lambda}_{z} W_{\mu \nu}^{+} W_{\nu \rho}^{-} \tilde{Z}_{\rho \mu}\right]
\end{aligned}
$$

There are basis-independent relations between ATGC and parameters describing Higgs couplings to electroweak gauge bosons:

$$
\begin{aligned}
\delta g_{1, z} & =\frac{1}{2\left(g_{L}^{2}-g_{Y}^{2}\right)}\left[c_{\gamma \gamma} e^{2} g_{Y}^{2}+c_{z \gamma}\left(g_{L}^{2}-g_{Y}^{2}\right) g_{Y}^{2}-c_{z z}\left(g_{L}^{2}+g_{Y}^{2}\right) g_{Y}^{2}-c_{z \square}\left(g_{L}^{2}+g_{Y}^{2}\right) g_{L}^{2}\right] \\
\delta \kappa_{\gamma} & =-\frac{g_{L}^{2}}{2}\left(c_{\gamma \gamma} \frac{e^{2}}{g_{L}^{2}+g_{Y}^{2}}+c_{z \gamma} \frac{g_{L}^{2}-g_{Y}^{2}}{g_{L}^{2}+g_{Y}^{2}}-c_{z z}\right), \\
\tilde{\kappa}_{\gamma} & =-\frac{g_{L}^{2}}{2}\left(\tilde{c}_{\gamma \gamma} \frac{e^{2}}{g_{L}^{2}+g_{Y}^{2}}+\tilde{c}_{z \gamma} \frac{g_{L}^{2}-g_{Y}^{2}}{g_{L}^{2}+g_{Y}^{2}}-\tilde{c}_{z z}\right)
\end{aligned}
$$

TGC - Higgs Synergy

Previous combinations of Higgs and TGC
Corbett et al 1304.1151 Dumont et al 1304.3369
Pomarol Riva 1308.2803
Masso 1406.6377
Ellis et al 1410.7703

Our work
AA,Gonzalez-Alonso, Grel jo, Marzocca 1508.00581
Consistent EFT analysis
at $0(1 / \wedge \wedge 2)$

$$
\begin{aligned}
\left(\begin{array}{c}
\delta g_{1, z} \\
\delta \kappa_{\gamma} \\
\lambda_{z}
\end{array}\right) & =\left(\begin{array}{c}
0.037 \pm 0.041 \\
0.133 \pm 0.087 \\
-0.152 \pm 0.080
\end{array}\right) \\
\rho & =\left(\begin{array}{ccc}
1 & 0.62 & -0.84 \\
0.62 & 1 & -0.85 \\
-0.84 & -0.85 & 1
\end{array}\right)
\end{aligned}
$$

- LHC Higgs and LEP-2 WW data by itself do not constrain TGCs robustly due to each suffering from 1 flat direction in space of 3 TGCs
- However, the flat directions are orthogonal and combined constraints lead to robust O(0.1) limits on aTGCs

Quartic gauge couplings

- In $\mathrm{D}=6 \mathrm{EFT}$, quartic gauge couplings involving W bosons receive corrections from the SM
- QGC coefficients can be expressed by TGC ones

$$
\begin{aligned}
\mathcal{L}_{\mathrm{qgc}} & =e^{2}\left(W_{\mu}^{+} A_{\mu} W_{\nu}^{-} A_{\nu}-W_{\mu}^{+} W_{\mu}^{-} A_{\nu} A_{\nu}\right) \\
& +\left(1+\delta g_{1, z}\right) \frac{g_{L}^{2}}{2}\left(W_{\mu}^{+} W_{\mu}^{+} W_{\nu}^{-} W_{\nu}^{-}-W_{\mu}^{+} W_{\mu}^{-} W_{\nu}^{+} W_{\nu}^{-}\right) \\
& +\left(1+\delta g_{1, z}\right) g_{L}^{2} c_{\theta}^{2}\left(W_{\mu}^{+} Z_{\mu} W_{\nu}^{-} Z_{\nu}-W_{\mu}^{+} W_{\mu}^{-} Z_{\nu} Z_{\nu}\right) \\
& +\left(1+\delta g_{1, z}\right) e g_{L} c_{\theta}\left(W_{\mu}^{+} Z_{\mu} W_{\nu}^{-} A_{\nu}+W_{\mu}^{+} A_{\mu} W_{\nu}^{-} Z_{\nu}-2 W_{\mu}^{+} W_{\mu}^{-} Z_{\nu} A_{\nu}\right) \\
& -\frac{g_{L}^{2}}{2} \frac{\lambda_{z}}{m_{W}^{2}}\left(W_{\mu \nu}^{+} W_{\nu \rho}^{-}-W_{\mu \nu}^{-} W_{\nu \rho}^{+}\right)\left(W_{\mu}^{+} W_{\rho}^{-}-W_{\mu}^{-} W_{\rho}^{+}\right) \\
& -g_{L}^{2} c_{\theta}^{2} \frac{\lambda_{z}}{m_{W}^{2}}\left[W_{\mu}^{+}\left(Z_{\mu \nu} W_{\nu \rho}^{-}-W_{\mu \nu}^{-} Z_{\nu \rho}\right) Z_{\rho}+W_{\mu}^{-}\left(Z_{\mu \nu} W_{\nu \rho}^{+}-W_{\mu \nu}^{+} Z_{\nu \rho}\right) Z_{\rho}\right] \\
& -e^{2} \frac{\lambda_{z}^{2}}{m_{W}^{2}}\left[W_{\mu}^{+}\left(A_{\mu \nu} W_{\nu \rho}^{-}-W_{\mu \nu}^{-} A_{\nu \rho}\right) A_{\rho}+W_{\mu}^{-}\left(A_{\mu \nu} W_{\nu \rho}^{+}-W_{\mu \nu}^{+} A_{\nu \rho}\right) A_{\rho}\right] \\
& -e g_{L} c_{\theta} \frac{\lambda_{z}}{m_{W}^{2}}\left[W_{\mu}^{+}\left(A_{\mu \nu} W_{\nu \rho}^{-}-W_{\mu \nu}^{-} A_{\nu \rho}\right) Z_{\rho}+W_{\mu}^{-}\left(A_{\mu \nu} W_{\nu \rho}^{+}-W_{\mu \nu}^{+} A_{\nu \rho}\right) Z_{\rho}\right] \\
& -e g_{L} c_{\theta} \frac{\lambda_{z}}{m_{W}^{2}}\left[W_{\mu}^{+}\left(Z_{\mu \nu} W_{\nu \rho}^{-}-W_{\mu \nu}^{-} Z_{\nu \rho}\right) A_{\rho}+W_{\mu}^{-}\left(Z_{\mu \nu} W_{\nu \rho}^{+}-W_{\mu \nu}^{+} Z_{\nu \rho}\right) A_{\rho}\right]
\end{aligned}
$$

In EFT with only $D=6$ operators, triple and quartic gauge couplings with only neutral gauge bosons (like ZZZ or ZZAA) do not arise

Higgs Basis

- Connection between operators and observables a bit obscured in Warsaw or SILH basis. Also, EW preciision measurements place constraints on complicated linear combinations of Wilson coefficients.
- For some applications, it may be simpler to work with couplings of mass eigenstate rather than Wilson coefficients of $D=6$ operators
- Higgs basis proposed by LHCHXSWG2 uses subset of couplings in mass eigenstate Lagrangian to span $D=6$ basis. Effectively, a rotation of any other $D=6$ basis

2499 dimensional vector of Wilson coefficients

Very constrained parameters

$$
\begin{gathered}
\text { Linear } \\
\text { transformation } \\
\vec{c}_{\mathrm{D}=6}=\hat{T} \cdot \vec{c}_{\mathrm{HB}} \\
2499 \times 2499 \text { dimensional } \\
\text { transformation matrix }
\end{gathered}
$$

Instead of wilson coefficients in some basis, use directly a subset of eigenstates couplings to parametrize the $D=6 E F T$ space
Hings couplings to gauge bosons

CP even: $\begin{array}{lllllll}c_{z} & c_{z} \square & c_{z z} & c_{z \gamma} & c_{\gamma \gamma} & c_{g g}\end{array}$ CP odd: $\begin{array}{clllll}\tilde{c}_{z z} & \tilde{c}_{z \gamma} & \tilde{c}_{\gamma \gamma} & \tilde{c}_{g g}\end{array}$ Hings couplings to

CP even: $\delta y_{u} \delta y_{d} \quad \delta y_{e}$

fermions
CP odd: $\phi_{u} \phi_{d} \phi_{e}$
Triple gauge couplings

CP - even: λ_{z}
 CP - odd: $\tilde{\lambda}_{z}$

Vertex and mass
Corrections

$$
\begin{array}{r}
\delta m, \\
\delta g_{L}^{Z e}, \delta g_{R}^{Z e}, \delta g_{L}^{W \ell}, \\
\delta g_{L}^{Z u}, \delta g_{R}^{Z u}, \delta g_{L}^{Z d}, \delta g_{R}^{Z d}, \delta g_{R}^{W q}
\end{array}
$$

Hings couplings to gauge bosons Hings couplings to fermions

Triple gauge couplings

Vertex and mass
Corrections
CP even: $\delta c_{z} c_{z \gamma} c_{\gamma \gamma} c_{g g}$
CP odd: $\tilde{\sim}_{z v} \tilde{c}_{z \gamma} \quad \tilde{c}_{\gamma \gamma} \quad \tilde{c}_{g g}$
CP even: $\delta y_{u} \delta y_{d} \delta y_{e}$
CP odd: $\phi_{u} \phi_{d} \phi_{e}$
CP - even : $\delta g_{1, z}, \delta \kappa_{\gamma}, \lambda_{z}$
CP - odd : $\delta \tilde{\kappa}_{\gamma}, \tilde{\lambda}_{z}$
δm,
$\delta g_{L}^{Z e}, \delta g_{R}^{Z e}, \delta g_{L}^{W \ell}$,
$\delta g_{L}^{Z u}, \delta g_{R}^{Z u}, \delta g_{L}^{Z d}, \delta g_{R}^{Z d}, \delta g_{R}^{W q}$
Many equivalent parametrization exist.
What stays unchanged is 1) physics, 2) number of parameters

TGC - Physical significance

Low-energy perspective

- ATGCs affect WW production. In particular, they change energy dependence of s-channel amplitudes and spoil unitarity cancellations, thus leading to amplitudes growing with energy
- Note that similar effects are induced by vertex corrections δg
- Different helicity amplitudes are affected by different combinations of aTGCs, therefore exploring s- and θ - dependence of WW production allows one, in principle, to simultaneously constrain all 3 CP-even ATGCs
- Leading $O\left(1 / \Lambda^{\wedge} 2\right)$ (tree-level $D=6$ in EFT) corrections to total and differential partonic production cross section can be computed analytically

WZ production in LHC

ATGC and vertex corrections lead to WZ production amplitudes growing with energy for $s>m Z^{\wedge} 2$

$$
\begin{aligned}
\mathcal{M}(0,0) & \approx \sin \theta \frac{g_{L} \sqrt{g_{L}^{2}+g_{Y}^{2}}}{2 \sqrt{2} m_{W} m_{Z}}\left[c_{\theta}^{2} \delta g_{1, z}+\delta g_{L}^{W q}\right] s \\
\mathcal{M}(\pm 1, \mp 1) & \approx-\sin \theta \frac{c_{\theta} g_{L}^{2}}{2 \sqrt{2} m_{W}^{2}}\left[\lambda_{z} \mp i \tilde{\lambda}_{z}\right] s \\
\mathcal{M}(\pm 1,0) & \approx(\mp 1+\cos \theta) \frac{g_{L} \sqrt{g_{L}^{2}+g_{Y}^{2}}}{4 m_{W}}\left[c_{\theta}^{2}\left(2 \delta g_{1, z}+\lambda_{z} \pm i \tilde{\lambda}_{z}\right)-s_{\theta}^{2}\left(\delta \kappa_{\gamma} \pm i \tilde{\kappa}_{\gamma}\right)+2 \delta g_{L}^{W q}\right] \sqrt{s} \\
\mathcal{M}(0, \pm 1) & \approx(\mp 1+\cos \theta) \frac{g_{L} \sqrt{g_{L}^{2}+g_{Y}^{2}}}{4 m_{Z}}\left[2 c_{\theta}^{2} \delta g_{1, z}+\lambda_{z} \pm i \tilde{\lambda}_{z}+2 \delta g_{L}^{W q}\right] \sqrt{s} \\
\text { scattering } & \text { cosinus of } \\
\text { angle } & \text { weak mixing } \\
\text { angle 17 } \quad \text { Note that both longitudinal and transverse } & \text { amplitudes may be fast growing! }
\end{aligned}
$$

TGC - Physical significance

High-energy perspective

- ATGCs and $\delta \mathrm{g}$ arise as effective description of effects of heavy particles from beyond the SM
- $\delta \mathrm{g}$ and glz can arise from tree-level new physics effects, e.g. from integrating out vector resonances mixing with W and/or Z bosons
- $\delta k y$ and λz arise only at 1-loop level; note however that models where $\delta \mathrm{g}$ and glz arise at tree-level are typically strongly constrained by EWPT, so I personally see no strong motivation to ignore $\delta k y$ and λz for this reason

$$
\begin{aligned}
\Delta \mathcal{L} & =-\frac{1}{4} V_{\mu \nu}^{i} V_{\mu \nu}^{i}+\frac{m_{V}^{2}}{2} V_{\mu}^{i} V_{\mu}^{i} \\
& +\frac{i}{2} g_{L} \kappa_{H} V_{\mu}^{i} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H+\frac{g_{L}}{2} V_{\mu}^{i} \kappa_{q, J} \bar{f}_{J} \sigma^{i} \bar{\sigma}_{\mu} f_{J}+\ldots
\end{aligned}
$$

Low Energy EFT Lagrangian:

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}-\frac{g_{L}^{2}}{8 m_{V}^{2}}\left(i \kappa_{H} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H+\kappa^{q, J} \bar{q}_{J} \sigma^{i} \bar{\sigma}_{\mu} q_{J}\right)^{2}+\mathcal{O}\left(m_{V}^{-4}\right)
$$

$$
\begin{aligned}
\delta c_{w}=\delta c_{z} & =-\frac{3 g_{L}^{2} v^{2}}{8 m_{V}^{2}} \kappa_{H}^{2} \\
\delta y_{f} & =-\frac{g_{L}^{2} v^{2}}{8 m_{V}^{2}} \kappa_{H}^{2}
\end{aligned}
$$

$$
\begin{aligned}
{\left[\delta g_{L}^{Z u}\right]_{J J}=-\left[\delta g_{L}^{Z d}\right]_{J J} } & =-\frac{g_{L}^{2} v^{2}}{8 m_{V}^{2}} \kappa_{H} \kappa_{q, J} \\
{\left[\delta g_{L}^{W q}\right]_{J J} } & =-\frac{g_{L}^{2} v^{2}}{4 m_{V}^{2}} \kappa_{H} \kappa_{q, J}
\end{aligned}
$$

$-1.3 \times 10^{-3}<\delta g_{L}^{W q}<2.2 \times 10^{-3}$
EWPT constraints:
$-1.0 \times 10^{-3}<\delta g_{L}^{W q}<0.5 \times 10^{-3}$
(1st generation quark couplings only)
(flavor universal quark couplings)

BSM vs EFT description of WZ production

Compare WZ production calculated in:

- (Black): model with SU(2)L triplet of heavy vector resonances
- (Red): in corresponding $D=6$ EFT at $O\left(1 / \Lambda^{\wedge} 2\right)$
in corresponding $D=6$ EFT keeping also quadratic $O\left(1 / \wedge^{\wedge} 4\right)$ terms

All 3 benchmark points correspond to same EFT with

$$
\delta g_{L}^{W q}=1.6 \times 10^{-3}
$$

Weak coupling:

- "Truth" well approximated by EFT for E<<^
- EFT starts to diverge for E approaching Λ, due to $D=8$ operators becoming non-negligible

Strong couplings

- For same Λ, larger range where "Truth" well approximated by EFT
- When NP >> SM linear approximation is useless, but quadratic is still OK

$$
\begin{aligned}
\Delta \mathcal{L} & =-\frac{1}{4} V_{\mu \nu}^{i} V_{\mu \nu}^{i}-\frac{1}{4} V_{\mu \nu}^{0} V_{\mu \nu}^{0}+\frac{m_{V}^{2}}{2} V_{\mu}^{i} V_{\mu}^{i}+\frac{m_{V}^{2}}{2} V_{\mu}^{0} V_{\mu}^{0} \\
& -\frac{i}{2} g_{L} \kappa_{H} V_{\mu}^{0} H^{\dagger} \overleftrightarrow{D_{\mu}} H+g_{L} V_{\mu}^{0} \sum_{f \in \ell, q} \kappa_{f} Y_{f} \bar{f} \bar{\sigma}_{\mu} f+g_{L} V_{\mu}^{0} \sum_{f \in e, u, d} \kappa_{f} Y_{\bar{f} c} f^{c} \sigma_{\mu} \bar{f}^{c} \\
& +\frac{i}{2} g_{L} \kappa_{H}^{\prime} V_{\mu}^{i} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H+\frac{g_{L}}{2} V_{\mu}^{i} \sum_{f \in \ell, q} \kappa_{f}^{\prime} \bar{f} \sigma^{i} \bar{\sigma}_{\mu} f,
\end{aligned}
$$

$$
\begin{aligned}
& \kappa_{f}^{\prime}=-\frac{g_{L}^{2}}{2 g_{Y}^{2}} \frac{\kappa_{H}^{2}}{\kappa_{H}^{\prime}}, \quad f=\ell, q \\
& \kappa_{f}=-\frac{\kappa_{H}}{2}, \quad f=\ell, q, e, u, d
\end{aligned}
$$

+ fine-tuned contribution to GF Tunings cancel *all* vertex and W mass corrections

Low Energy EFT:

$$
\delta g_{1, z}=-\kappa_{H}^{2} \frac{g_{L}^{2}+g_{Y}^{2}}{2 g_{Y}^{2}} \frac{m_{W}^{2}}{m_{V}^{2}}
$$

$$
\begin{aligned}
\delta c_{w}=\delta c_{z} & =-\frac{3\left(g_{L}^{2} \kappa_{H}^{2}+g_{Y}^{2} \kappa_{H}^{\prime 2}\right)}{2 g_{Y}^{2}} \frac{m_{W}^{2}}{m_{V}^{2}} \\
\delta y_{f} & =-\frac{g_{L}^{2} \kappa_{H}^{2}+g_{Y}^{2} \kappa_{H}^{\prime 2}}{2 g_{Y}^{2}} \frac{m_{W}^{2}}{m_{V}^{2}} \\
c_{w \square} & =\frac{\kappa_{H}^{2}}{g_{Y}^{2}} \frac{m_{V}^{2}}{m_{V}^{2}} \\
c_{z \square} & =\kappa_{H}^{2} 2_{L}^{2}-g_{Y}^{2} g_{V}^{2} \\
c_{L}^{2} g_{Y}^{2} & \frac{m_{V}^{2}}{m_{V}^{2}} \\
c_{\gamma}^{2} & \frac{\kappa_{H}^{2}}{g_{Y}^{2}} \frac{m_{V}^{2}}{m_{V}^{2}}
\end{aligned}
$$

$W Z$ production in $S U(2) \times U(1)$ model

Compare WZ production calculated in:

- (Black): model with $S U(2) L X U(1) Y$ triplet and singlet heavy vector resonances
- (Red): in corresponding $D=6$ EFT at $O\left(1 / \Lambda^{\wedge} 2\right)$
- in corresponding $D=6$ EFT keeping also quadratic $O\left(1 / \Lambda^{\wedge} 4\right)$ terms

All 3 benchmark points correspond to same EFT with

$$
\delta g_{1, z}=-0.009
$$

Weak coupling:

- "Truth" well approximated by EFT for E<<
- EFT starts to diverge for E approaching Λ, due to $D=8$ operators becoming non-negligible

Strong couplings

- For same Λ, larger range where "Truth" well approximated by EFT
- When NP >> SM linear approximation is useless, but quadratic is still OK

Any parametrization is good (ATGC, D=6 HISZ operators, $D=6$ SILH operators), as long as *all* $\mathrm{D}=6$ operators contributing to diboson production are taken into account. This means number of parameters probed may vary for different bases, but number of probed *linear combinations* of parameters is always the same

- The range of center-of-mass energies of partonic collisions used in the analysis should be restricted as $E<\Lambda$ for several choices of Λ, and results should be quoted as function of \wedge
- Likelihood should be given for all 3 aTGCs simultaneously, together with the correlation matrix. In the best of all worlds, 5D likelihood for 3ATGC and 2 light quark vertex corrections
- Analysis should be performed 1) consistently at $O\left(1 / \wedge^{\wedge} 2\right)$ in the EFT expansion, and 2) keeping also the contribution quadratic in Wilson coefficients of $D=6$ operators, and the two results should be compared

This kind of presentation will allow theorists to use TGC constraints from LHC to probe much larger class of BSM models, and to consistently combine TGC and Higgs constraints

Back-up

Example: Warsaw Basis

Bosonic CP-even			Bosonic CP-odd	
O_{H}	$\left[\partial_{\mu}\left(H^{\dagger} H\right)\right]^{2}$			
O_{T}	$\left(H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)^{2}$			
$O_{6 H}$	$\lambda\left(H^{\dagger} H\right)^{3}$			
$O_{G G}$	$H^{\dagger} H G_{\mu \nu}^{a} G_{\mu \nu}^{a}$		$O_{\widetilde{G G}}$	$H^{\dagger} H \widetilde{G}_{\mu \nu}^{a} G_{\mu \nu}^{a}$
$O_{W W}$	$H^{\dagger} H W_{\mu \nu}^{i} W_{\mu \nu}^{i}$		$O_{\widetilde{W W}}$	$H^{\dagger} H \widetilde{W}_{\mu \nu}^{i} W_{\mu \nu}^{i}$
$O_{B B}$	$H^{\dagger} H B_{\mu \nu} B_{\mu \nu}$		$O_{\widetilde{B B}}$	$H^{\dagger} H \widetilde{B}_{\mu \nu} B_{\mu \nu}$
$O_{W B}$	$H^{\dagger} \sigma^{i} H W_{\mu \nu}^{i} B_{\mu \nu}$		$O_{\widetilde{W B}}$	$H^{\dagger} \sigma^{i} H \widetilde{W_{\mu \nu}^{i} B_{\mu \nu}}$
$O_{3 W}$	$\epsilon^{i j k} W_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k}$		$O_{\widetilde{3 W}}$	$\epsilon^{i j k} \widetilde{W}_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k}$
$O_{3 G}$	$f^{a b c} G_{\mu \nu}^{a} G_{\nu \rho}^{b} G_{\rho \mu}^{c}$		$O_{\widetilde{3 G}}$	$f^{a b c} \widetilde{G}_{\mu \nu}^{a} G_{\nu \rho}^{b} G_{\rho \mu}^{c}$

59 different

kinds of operators, of which 17 are complex

2499 distinct operators,

 including flavor structure and CP conjugatesAlonso et al 1312.2014

+4 fermion operators

Dipole

$\left[O_{H \ell}\right]_{I J}$	$i \bar{\ell}_{I} \bar{\sigma}_{\mu} \ell_{J} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H e}^{\prime}\right]_{I J}$	$i{\overline{\ell_{I}} \sigma^{i} \bar{\sigma}_{\mu} \ell_{J} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H}_{\left[O_{H e}\right]_{I J}} \quad i e_{I}^{c} \sigma_{\mu} \bar{e}_{J}^{c} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H q}\right]_{I J}$	$i \bar{q}_{I} \bar{\sigma}_{\mu} q_{J} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H q}^{\prime}\right]_{I J}$	$i \bar{q}_{I} \sigma^{i}{\overline{\sigma_{\mu}} q_{J} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H}_{\left[O_{H u}\right]_{I J}} \quad i u_{I}^{c} \sigma_{\mu} \bar{u}_{J}^{c} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H d}\right]_{I J}$	$i d_{I}^{c} \sigma_{\mu} \bar{d}_{J}^{c} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H u d}\right]_{I J}$	$i u_{I}^{c} \sigma_{\mu} \bar{d}_{J}^{c} \tilde{H}^{\dagger} D_{\mu} H$

Example: SILH Basis

Bosonic CP-even		Bosonic CP-odd		
O_{H}	$\left[\partial_{\mu}\left(H^{\dagger} H\right)\right]^{2}$			
O_{T}	$\left(H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)^{2}$			
$O_{6 H}$	$\left(H^{\dagger} H\right)^{3}$			
$O_{G G}$	$H^{\dagger} H G_{\mu \nu}^{a} G_{\mu \nu}^{a}$		$O_{\widetilde{G G}}$	$H^{\dagger} H \widetilde{G_{\mu \nu}^{a}} G_{\mu \nu}^{a}$
$O_{B B}$	$H^{\dagger} H B_{\mu \nu} B_{\mu \nu}$		$O_{\widetilde{B B}}$	$H^{\dagger} H \widetilde{B}_{\mu \nu} B_{\mu \nu}$
O_{W}	$\frac{i}{2}\left(H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H\right) D_{\nu} W_{\mu \nu}^{i}$			
O_{B}	$\frac{i}{2}\left(H^{\dagger} \overleftrightarrow{D_{\mu}} H\right) \partial_{\nu} B_{\mu \nu}$			
$O_{H W}$	$i\left(D_{\mu} H^{\dagger} \sigma^{i} D_{\nu} H\right) W_{\mu \nu}^{i}$		$O_{\widetilde{H W}}$	$i\left(D_{\mu} H^{\dagger} \sigma^{i} D_{\nu} H\right) \widetilde{W_{\mu \nu}}{ }_{\mu \nu}$
$O_{H B}$	$i\left(D_{\mu} H^{\dagger} D_{\nu} H\right) B_{\mu \nu}$		$O_{\widetilde{H B}}$	$i\left(D_{\mu} H^{\dagger} D_{\nu} H\right) \widetilde{B}_{\mu \nu}$
$O_{2 W}$	$\frac{1}{g_{L}^{2}} D_{\mu} W_{\mu \nu}^{i} D_{\rho} W_{\rho \nu}^{i}$			
$O_{2 B}$	$\frac{1}{g_{Y}^{2}} \partial_{\mu} B_{\mu \nu} \partial_{\rho} B_{\rho \nu}$			
$O_{2 G}$	$\frac{1}{g_{s}^{2}} D_{\mu} G_{\mu \nu}^{a} D_{\rho} G_{\rho \nu}^{a}$			
$O_{3 W}$	$\epsilon^{i j k} W_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k}$		$O_{\widetilde{3 W}}$	$\epsilon^{i j k} \widetilde{W}_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k}$
$O_{3 G}$	$f^{a b c} G_{\mu \nu}^{a} G_{\nu \rho}^{b} G_{\rho \mu}^{c}$		$O_{\widetilde{3 G}}$	$f^{a b c} \widetilde{G}_{\mu \nu}^{a} G_{\nu \rho}^{b} G_{\rho \mu}^{c}$

+4 fermion operators

$\left[O_{H \ell}\right]_{I J}$	$i \bar{\ell}_{I} \bar{\sigma}_{\mu} \ell_{J} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H \ell}^{\prime}\right]_{I J}$	$i \bar{\ell}_{I} \sigma^{i} \bar{\sigma}_{\mu} \ell_{J} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H e}\right]_{I J}$	$i e_{I}^{c} \sigma_{\mu} \bar{e}_{J}^{c} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H q}\right]_{I J}$	$i \bar{q}_{I} \bar{\sigma}_{\mu} q_{J} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H q}^{\prime}\right]_{I J}$	$i \bar{q}_{I} \sigma^{i} \bar{\sigma}_{\mu} q_{J} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H u}\right]_{I J}$	$i u_{I}^{c} \sigma_{\mu} \bar{u}_{J}^{c} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H d}\right]_{I J}$	$i d_{I}^{c} \sigma_{\mu} \bar{d}_{J}^{c} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H u d}\right]_{I J}$	$i u_{I}^{c} \sigma_{\mu} \bar{d}_{J}^{c} \tilde{H}^{\dagger} D_{\mu} H$

Giudice et al hep-ph/0703164 Contino et al 1303.3876

More bosonic operators, at the expense of some 2-fermion and 4 -fermion operators Total still adds up to 2499

$$
\begin{aligned}
& {\left[\delta g_{L}^{W e}\right]_{i i}=\left(\begin{array}{c}
-1.00 \pm 0.64 \\
-1.36 \pm 0.59 \\
1.95 \pm 0.79
\end{array}\right) \times 10^{-2},} \\
& {\left[\delta g_{L}^{Z e}\right]_{i i}=\left(\begin{array}{c}
-0.26 \pm 0.28 \\
0.1 \pm 1.1 \\
0.16 \pm 0.58
\end{array}\right) \times 10^{-3}, \quad\left[\delta g_{R}^{Z e}\right]_{i i}=\left(\begin{array}{c}
-0.37 \pm 0.27 \\
0.0 \pm 1.3 \\
0.39 \pm 0.62
\end{array}\right) \times 10^{-3},} \\
& {\left[\delta g_{L}^{Z u}\right]_{i i}=\left(\begin{array}{c}
-0.8 \pm 3.1 \\
-0.16 \pm 0.36 \\
-0.28 \pm 3.8
\end{array}\right) \times 10^{-2}, \quad\left[\delta g_{R}^{Z u}\right]_{i i}=\left(\begin{array}{c}
1.3 \pm 5.1 \\
-0.38 \pm 0.51 \\
\times \\
2.9 \pm 16 \\
3.5 \pm 5.0 \\
2.30 \pm 0.82
\end{array}\right) \times 10^{-2},} \\
& {\left[\delta g_{L}^{Z d}\right]_{i i}=\left(\begin{array}{c}
-1.0 \pm 4.4 \\
0.9 \pm 2.8 \\
0.33 \pm 0.16
\end{array}\right) \times 10^{-2}, \quad\left[\delta g_{R}^{Z d}\right]_{i i}=\left(\begin{array}{c}
\end{array}\right.}
\end{aligned}
$$

$$
\mathcal{L}_{v f f}=\frac{g_{L}}{\sqrt{2}}\left(W_{\mu}^{+} \bar{u} \bar{\sigma}_{\mu}\left(V_{\mathrm{CKM}}+\delta g_{L}^{W q}\right) d+W_{\mu}^{+} u^{c} \sigma_{\mu} \delta g_{R}^{W q} \bar{d}^{c}+W_{\mu}^{+} \bar{\nu} \bar{\sigma}_{\mu}\left(I+\delta g_{L}^{W \ell}\right) e+\text { h.c. }\right)
$$

$$
+\sqrt{g_{L}^{2}+g_{Y}^{2}} Z_{\mu}\left[\sum_{f \in u, d, e, \nu} \bar{f} \bar{\sigma}_{\mu}\left(T_{f}^{3}-s_{\theta}^{2} Q_{f}+\delta g_{L}^{Z f}\right) f+\sum_{f^{c} \in u^{c}, d^{c}, e^{c}} f^{c} \sigma_{\mu}\left(-s_{\theta}^{2} Q_{f}+\delta g_{R}^{Z f}\right) \bar{f}^{c}\right]
$$

- Wigs couplings to gauge bosons CP even : $\begin{array}{lllllll}\delta c_{z} & c_{z} \square & c_{z z} & c_{z \gamma} & c_{\gamma \gamma} & c_{g g}\end{array}$ described by 6 CP even and 4 CP odd parameters that are unconstrained by LEP-1
- D=6 EFT with linearly realized $S U(3) \times S U(2) \times U(1)$ enforces relations between Hings couplings to gauge bosons (otherwise, more parameters)
- Corrections to Higgs Yukawa couplings to fermions are also unconstrained by EWPT
- Apart from δm and $\delta \mathrm{g}$, additional $6+3 \times 3 \times 3$ CP-even and $4+3 \times 3 \times 3$ CP -odd parameters to parametrize LHC Hogs physics CP odd : $\begin{array}{ccccc}\tilde{c}_{z z} & \tilde{c}_{z \gamma} & \tilde{c}_{\gamma \gamma} & \tilde{c}_{g g}\end{array}$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{hvv}} & =\frac{h}{v}\left[2\left(1+\delta c_{w}\right) m_{W}^{2} W_{\mu}^{+} W_{\mu}^{-}+\left(1+\delta c_{z}\right) m_{Z}^{2} Z_{\mu} Z_{\mu}\right. \\
& +c_{w w} \frac{g_{L}^{2}}{2} W_{\mu \nu}^{+} W_{\mu \nu}^{-}+\tilde{c}_{w w} \frac{g_{L}^{2}}{2} W_{\mu \nu}^{+} \tilde{W}_{\mu \nu}^{-}+c_{w \square} g_{L}^{2}\left(W_{\mu}^{-} \partial_{\nu} W_{\mu \nu}^{+}+\text {h.c. }\right) \\
& +c_{g g} \frac{g_{s}^{2}}{4} G_{\mu \nu}^{a} G_{\mu \nu}^{a}+c_{\gamma \gamma} \frac{e^{2}}{4} A_{\mu \nu} A_{\mu \nu}+c_{z \gamma} \frac{e g_{L}}{2 c_{\theta}} Z_{\mu \nu} A_{\mu \nu}+c_{z z} \frac{g_{L}^{2}}{4 c_{\theta}^{2}} Z_{\mu \nu} Z_{\mu \nu} \\
& +c_{z \square} g_{L}^{2} Z_{\mu} \partial_{\nu} Z_{\mu \nu}+c_{\gamma \square g_{L} g_{Y} Z_{\mu} \partial_{\nu} A_{\mu \nu}} \\
& \left.+\tilde{c}_{g g} \frac{g_{s}^{2}}{4} G_{\mu \nu}^{a} \tilde{G}_{\mu \nu}^{a}+\tilde{c}_{\gamma \gamma} \frac{e^{2}}{4} A_{\mu \nu} \tilde{A}_{\mu \nu}+\tilde{c}_{z \gamma} \frac{e g_{L}}{2 c_{\theta}} Z_{\mu \nu} \tilde{A}_{\mu \nu}+\tilde{c}_{z z} \frac{g_{L}^{2}}{4 c_{\theta}^{2}} Z_{\mu \nu} \tilde{z}_{\mu \nu}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \delta c_{w}=\delta c_{z}+4 \delta m, \longleftarrow \text { relative correction to } \mathrm{W} \text { mass } \\
& c_{w w}=c_{z z}+2 s_{\theta}^{2} c_{z \gamma}+s_{\theta}^{4} c_{\gamma \gamma}, \\
& \tilde{c}_{w w}=\tilde{c}_{z z}+2 s_{\theta}^{2} \tilde{c}_{z \gamma}+s_{\theta}^{4} \tilde{c}_{\gamma \gamma}, \\
& c_{w \square}=\frac{1}{g_{L}^{2}-g_{Y}^{2}}\left[g_{L}^{2} c_{z \square}+g_{Y}^{2} c_{z z}-e^{2} s_{\theta}^{2} c_{\gamma \gamma}-\left(g_{L}^{2}-g_{Y}^{2}\right) s_{\theta}^{2} c_{z \gamma}\right], \\
& c_{\gamma \square}=\frac{1}{g_{L}^{2}-g_{Y}^{2}}\left[2 g_{L}^{2} c_{z \square}+\left(g_{L}^{2}+g_{Y}^{2}\right) c_{z z}-e^{2} c_{\gamma \gamma}-\left(g_{L}^{2}-g_{Y}^{2}\right) c_{z \gamma}\right]
\end{aligned}
$$

LHCHXSWG-INT-2015-001

CP even: $\quad \delta y_{u} \quad \delta y_{d} \quad \delta y_{e} \mathcal{L}_{\mathrm{hff}}=-\sum m_{f} f^{c}\left(I+\delta y_{f} e^{i \phi_{f}}\right) f+$ h.c.

 CP odd: $\phi_{u} \quad \phi_{d} \quad \phi_{e} \quad f=u, d, e$