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LHC EWWG di-boson discussion on aGC for run-2



Effective Theory Approach to BSM

New physics scale Λ separated from EW scale v, Λ >> v 

Linearly realized SU(3)xSU(2)xU(1) local symmetry spontaneously broken by VEV 
of Higgs doublet field

Basic assumptions

EFT Lagrangian beyond the SM  expanded in operator dimension D, 
or, equivalently, in  

X X X

Lepton number violating, hence
too small to be probed at LHC

By assumption, 
subleading

to D=6

Standard Model, 
operators up to D=4

Cutoff scale of EFT Appear when starting from L-conserving BSM,
and integrating out heavy particles with m≈Λ 
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D=6 BasesFor D=6 Lagrangian several 
complete non-redundant set 

of operators 
(so-called basis) 

proposed in the literature 

Grządkowski et al. 1008.4884
Warsaw 
Basis

SILH
basis

Giudice et al  hep-ph/0703164
Contino et al 1303.3876 

Higgs
basis

Gupta et al 1405.0181 

HISZ
basis

Primary
basis

LHCHXSWG-INT-2015-001 

All bases are equivalent, but some may be more 
equivalent convenient for specific applications

Physics description  (EWPT, Higgs, RG running) in any of 
these bases contains the same information, provided all 
operators contributing to that process are taken into 
account

Hagiwara et al (1993) 

One Rosetta 
to rule them all

arXiv:1508.05895

http://arxiv.org/abs/1303.3876
http://arxiv.org/abs/1303.3876
http://arxiv.org/abs/hep-ph/0703164
http://arxiv.org/abs/hep-ph/0703164
http://arxiv.org/abs/arXiv:1303.3876
http://arxiv.org/abs/arXiv:1303.3876
http://arxiv.org/abs/1508.05895
http://arxiv.org/abs/1508.05895


Several dimension-6 operators induce 
new contributions to triple gauge 
couplings of electroweak gauge bosons 
in the effective Lagrangian

Thus, aTGCs are O(1/Λ^2) in the EFT 
expansion

However, some care is needed to 
properly take into account their 
contribution to physical processes 

EFT vs ATGC
Some (not all independent)
 D=6 operators that yield

 triple gauge interaction vertices:
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Operators to Observables
Difficulties in the presence of D=6 operators

Affect relations between couplings and 
input observables

Change normalization of kinetic terms 

Introduce non-standard higher-
derivative kinetic terms

Introduce kinetic mixing between 
photon and Z boson

e.g.

e.g.

e.g.

To simplify calculating physical predictions, one can map the theory with dimension-6 
operators onto the mass eigenstate Lagrangian

e.g.
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EFT Lagrangian with D=6 operators can be recast in terms of mass 
eigenstates after electroweak symmetry breaking (photon,W,Z,Higgs 
boson, top). SU(3)xSU(2)xU(1) is not manifest but hidden in relations 
between different couplings  

Feature #1: In the tree-level Lagrangian, all kinetic terms are 
canonically normalized, and there’s no kinetic mixing between mass 
eigenstates. In particular, all oblique corrections from new physics 
are zero, except for a correction to the W boson mass 

Feature #2: Tree-level relation between the couplings in the 
Lagrangian and SM input observables is the same as in the SM.

Feature #3: 2 more technical requirements concerning Higgs 
(self-)interactions

Features #1-3 can always be obtained without any loss of 
generality, starting from any Lagrangian with D=6 operators, using 
integration by parts, fields and couplings  redefinition

Mass Eigenstate Lagrangian
LHCHXSWG-INT-2015-001 
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By construction, photon and gluon couplings as in the SM. 
Only W and Z couplings are affected 

Effects of dimension-6 operators are parametrized by a set of vertex corrections

Effective Lagrangian: Z and W couplings to fermions 



Z and W couplings to fermions 

shift the W and Z couplings to fermions away from the SM Lagrangian of Eq. (2.4):243

�Lvertex =
gp
2

⇣
W+

µ ⌫̄L�µ�g
W `
L eL +W+

µ ū�µ�g
Wq
L dL +W+

µ ūR�µ�g
Wq
R dR + h.c.

⌘

+
p
g2 + g02Zµ

"
X

f2u,d,e,⌫

f̄L�µ�g
Zf
L fL +

X

f2u,d,e

f̄R�µ�g
Zf
R fR

#
, (4.12)

where all the �g are 3⇥ 3 Hermitian matrices in the generation space, except for �gWq
R244

which is a general 3 ⇥ 3 complex matrix. The vertex corrections to W and Z boson245

couplings to fermions are expressed by the Wilson coe�cients in the Warsaw basis as246

�gW `
L = c0H` + f(1/2, 0)� f(�1/2,�1),

�gZ⌫
L =

1

2
c0H` �

1

2
cH` + f(1/2, 0),

�gZe
L = �1

2
c0H` �

1

2
cH` + f(�1/2,�1),

�gZe
R = �1

2
cHe + f(0,�1), (4.13)

247

�gWq
L = c0HqVCKM + f(1/2, 2/3)� f(�1/2,�1/3),

�gWq
R = �1

2
cHud,

�gZu
L =

1

2
c0Hq �

1

2
cHq + f(1/2, 2/3),

�gZd
L = �1

2
V †
CKMc

0
HqVCKM � 1

2
V †
CKMcHqVCKM + f(�1/2,�1/3),

�gZu
R = �1

2
cHu + f(0, 2/3),

�gZd
R = �1

2
cHd + f(0,�1/3), (4.14)

where248

f(T 3, Q) = I3


�QcWB

g2g02

g2 � g02
+ (cT � �v)

✓
T 3 +Q

g02

g2 � g02

◆�
, (4.15)
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add and subtract the following Lagrangian term:221

�L =

✓
2
h

v
+

h2

v2

◆
[Ladd � Ladd, eom]

Ladd =
gp
2

g2

g2 � g02
�
cT � �v � g02cWB

� �
W+

µ j�µ + h.c.
�

+
p
g2 + g02

1

g2 � g02
�
(cT � �v)(g2j3µ + g02jYµ )� g2g02cWB(j

3
µ + jYµ )

�
Zµ

(4.8)

where Ladd, eom is Ladd with the fermionic currents jµ eliminated in favor of bosonic222

terms using the equations of motion in Eq. (2.2). This step ensures the the coe�cients223

of the vertex-like Higgs contact interactions hV ff and h2V ff in the Lagrangian are224

proportional to the vertex correction to the SM V ff interactions.225

After all these transformations, the conditions #1-#4 are satisfied. We can proceed226

to listing the corrections to the SM in �Ld=6 in this representation. We will focus on227

interaction terms that are relevant for LHC phenomenology. Coe�cients of all interac-228

tion terms in �Ld=6 are O(1/⇤2) in the EFT expansion, and will ignore all O(1/⇤4)229

and higher contributions. To facilitate presentation, we split �Ld=6 into the following230

parts,231

�Ld=6 = �Lmass+�Lvertex+Ldipole+�Ltgc+�Lqgc+�Lh+Lhvff+Lhdvff+�Lh,self+�Lh2+Lother.
(4.9)

Below we define each term in order of appearance. In this section we give the Lagrangian232

in the unitary gauge when the Goldstone bosons eaten by W and Z are set to zero; see233

Appendix B for a generalization to the R⇠ gauge.234

4.1 Quadratic terms235

By construction, there are no corrections to quadratic terms of the SM mass eigenstates236

with the exception of the shift of the W boson mass in Eq. (2.3):237

�Lmass = 2�m
g2v2

4
W+

µ W�
µ . (4.10)

The relation between �m and the Wilson coe�cients in the Warsaw and SILH bases is238

given by239

�m =
1

g2 � g02
⇥�g2g02cWB + g2cT � g02�v

⇤

= � g2g02

4(g2 � g02)

✓
sW + sB + s2W + s2B � 4

g02
sT +

2

g2
[s0H`]22

◆
. (4.11)

4.2 Gauge boson interactions with fermions240

Two types of corrections to the SM gauge boson interactions with fermions may be241

introduced by dimension-6 operators. One is the so-called vertex corrections, which242
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The operators in the Warsaw basis are listed in Tables 2.2, 2.3, and 2.4. My

choice of operators here di↵ers slightly from the one in Ref. [15] in that the operator

|H†DµH|2 is replaced by OT = (H† !DµH)2, where the anti-symmetrized derivative is

defined in Eq. (2.12). Furthermore, for Yukawa-type operators H|H|2f̄f I subtracted

v2 from |H|2 in the definition, so that they do not contribute to fermion mass terms.6

Finally, the notation and normalizations also di↵er from that in the original reference.

In order to illustrate the freedom of choosing a basis of operators, I will now

describe how to go from the Warsaw to the SILH basis. The bosonic operators in the

6This way one avoids tedious rotations of the fermion fields to bring them back to the mass
eigenstate basis. Starting with the Yukawa couplings �Hf̄ 0

R(Y
0
f + c0fH

†H/v2)f 0
L we can bring them

to the form in Eq. (2.2) and Table 2.3 by defining f 0
L,R = UL,RfL,R,

p
mimj [cf ]ij/v = [U†

Rc
0
fUL]ij ,

Yf = U†
R(Y

0
f + c0f/2)UL, where UL,R are unitary rotations to the mass eigenstate basis.

Yukawa

[Oe]IJ �(H†H � v2

2 )
p
mImJ

v ecIH
†`J

[Ou]IJ �(H†H � v2

2 )
p
mImJ

v ucI
eH†qJ

[Od]IJ �(H†H � v2

2 )
p
mImJ

v dcIH
†qJ

Vertex

[OH`]IJ i¯̀I �̄µ`JH† !DµH

[O0
H`]IJ i¯̀I�i�̄µ`JH†�i !DµH

[OHe]IJ iecI�µē
c
JH

† !DµH

[OHq]IJ iq̄I �̄µqJH† !DµH

[O0
Hq]IJ iq̄I�i�̄µqJH†�i !DµH

[OHu]IJ iucI�µū
c
JH

† !DµH

[OHd]IJ idcI�µd̄
c
JH

† !DµH

[OHud]IJ iucI�µd̄
c
JH̃

†DµH

Dipole

[OeW ]IJ
p
mImJ

v ecI�µ⌫H
†�i`JW i

µ⌫

[OeB]IJ
p
mImJ

v ecI�µ⌫H
†`JBµ⌫

[OuG]IJ
p
mImJ

v ucI�µ⌫T
a eH†qJ Ga

µ⌫

[OuW ]IJ
p
mImJ

v ucI�µ⌫
eH†�iqJ W i

µ⌫

[OuB]IJ
p
mImJ

v ucI�µ⌫
eH†qJ Bµ⌫

[OdG]IJ
p
mImJ

v dcI�µ⌫T
aH†qJ Ga

µ⌫

[OdW ]IJ
p
mImJ

v dcI�µ⌫H̄
†�iqJ W i

µ⌫

[OdB]IJ
p
mImJ

v dcI�µ⌫H
†qJ Bµ⌫

Table 2.3: Two-fermion D=6 operators in the Warsaw basis. Here, I, J are the
flavor indices. For complex operators (OHud and all Yukawa and dipole operators)
the corresponding complex conjugate operator is included as well.
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Basis-independent
relations between vertex corrections



TGCs in mass eigenstate Lagrangian

*After* necessary redefinitions are done, CP-even TGCs take the usual form

ATGCs related to Wilson coefficients of D=6 operators in Warsaw and SILH basis by

Note that 2nd line in δg1z are  contributions 
from 4-fermion, vertex, Higgs, and 4-derivative gauge operators

 They enter indirectly via the rescaling necessary to arrive 
at the phenomenological effective Lagrangian ! 

e.g.
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Basis-independent
relations between aTGCs



SM predicts TGCs in terms of gauge couplings 
as consequence of SM gauge symmetry and renormalizability:

In EFT with D=6 operators, new “anomalous”contributions to TGCs arise

There are basis-independent relations between ATGC and parameters 
describing Higgs couplings to electroweak gauge bosons:

TGCs and Higgs synergy



Previous combinations 
of Higgs and TGC

Corbett et al 1304.1151
Dumont et al 1304.3369
Pomarol Riva 1308.2803

Masso 1406.6377
Ellis et al 1410.7703

Our work
AA,Gonzalez-Alonso,Greljo,Marzocca  1508.00581

Consistent EFT analysis 
at O(1/Λ^2)

LEP-2 (WW)
Higgs
LEP-2 + Higgs

-1.5 -1.0 -0.5 0.0
-1.0

-0.5

0.0

0.5

1.0

�g1,z

���

2

and couplings to electrons. However, given the model-
independent electroweak precision constraints [12], these
measurements can e↵ectively constrain 3 linear combina-
tions of Wilson coe�cients of D=6 operators that cor-
respond to the aTGCs [5]. We use this dependence
to construct the 3D likelihood function �2

WW (�g1,z, �� ,
�z). For the LHC Higgs data, we use the signal strength
observables (µ) listed in Table I, separated according to
the final state and the production mode. The e↵ect of
D=6 operators on µ was calculated for each channel and
production mode in Ref. [13] and independently cross-
checked here. After imposing electroweak precision con-
straints, 9 linear combinations of D=6 operators can af-
fect µ in an observable way [8, 14]. The crucial point
is that 2 of these combinations correspond to the aT-
GCs �g1,z, �� . Therefore, the likelihood function con-
structed from LHC Higgs data, �2

h(�g1,z, �� , . . . ), may
lead to additional constraints on aTGCs. Indeed, com-
bining the likelihoods �2

comb. = �2
h + �2

WW we obtain
strong constraints on the aTGCs at the level of O(0.1).
After marginalizing over the remaining seven Wilson co-
e�cients, we find the following central values, 1 � errors,
and the correlation matrix for the aTGCs:

0

@
�g1,z
��

�z

1

A =

0

@
0.037± 0.041
0.133± 0.087
�0.152± 0.080

1

A ,

⇢ =

0

@
1 0.62 �0.84

0.62 1 �0.85
�0.84 �0.85 1

1

A .

(2)

These constraints hold in any new physics scenario pre-
dicting approximately flavor blind coe�cients of D=6
operators and in which D > 6 operators are sublead-
ing. Appendix A contains a technical description of our
fit and the constraints for all the 10 combinations of Wil-
son coe�cients entering the analysis. They are given in
di↵erent bases for reader’s convenience.

Let us discuss here qualitatively the most important
elements of our fit. Higgs data are sensitive to �g1,z and
�� primarily via their contribution to electroweak Higgs
production channels. However, only 1 combination of
these 2 aTGCs is strongly constrained, while the bound
on the direction �� ⇡ 3.8�g1,z is very weak. Analo-
gously, as already discussed, also LEP-2 bounds present
an approximate blind direction. This is illustrated in
Fig. 1, where the WW and Higgs constraints in the �g1,z–
�� plane are shown separately [15]. Since the flat direc-
tions are nearly orthogonal, combining LHC Higgs and
LEP-2 WW data leads to the non-trivial constraints on
aTGCs displayed in Eq. (2).

One could further strengthen the constraints on aT-
GCs by considering the process of single on-shell W bo-
son production in association with an electron and a neu-
trino [3], as in Ref. [5]. That process probes mostly ��

but it also a↵ects limits on the remaining aTGCs due to
the highly correlated nature of the constraints from WW
and Higgs data. Indeed, we find that adding single W

TGC
Higgs
TGC+Higgs

!1.5 !1.0 !0.5 0.0
!1.0

!0.5

0.0

0.5

1.0

∆g1,z

∆ΚΓ

FIG. 1. Allowed 68% and 95% CL region in the �g1,z-��

plane after considering LEP-II WW production data (TGC),
Higgs data, and the combination of both datasets.

data to the combined likelihood roughly halves the con-
fidence intervals for the aTGCs: �g1,z = 0.017 ± 0.023,
�� = 0.047± 0.034, �z = �0.089± 0.042. However, we
choose to highlight the more conservative result in Eq. (2)
as we consider it more robust. The reason is that the ex-
perimental extraction of the single W cross section from
fiducial measurements could be altered in a non-trivial
way in the presence of the aTGC �� , which a↵ects the
photon t-channel contribution to the production ampli-
tude. A more careful analysis is needed to render the
single W constraint more robust.

In the following we discuss whether the assumptions
employed in our analysis can be relaxed without conflict-
ing experimental data and, if yes, how this a↵ects our
results.

We begin by considering the possible impact of D=8
operators, contributing at O(⇤�4). Since the experimen-
tal precision at the LHC is currently moderate, O(20%)
at best, only higher-dimensional operators with ⇤ . few
hundred GeV can be constrained by Higgs physics. For
such a low ⇤ it is not a priori obvious that the D=8
operators are subleading. One way to estimate their ef-
fect is to include in the analysis corrections to Higgs and
WW observables that are quadratic in the Wilson coe�-
cients of D=6 operators, as they are also of O(⇤�4). If
the constraints on the aTGCs are severely a↵ected by
including the quadratic contributions, that would sig-
nal a potential sensitivity to D=8 operators [16]. In
fact, constraints from Higgs or from WW data alone
are completely changed after including the quadratic
terms. However, the combined data are only moder-
ately sensitive. Once the quadratic contributions are
included we find the constraints �g1,z = 0.032+0.043

�0.035,

LHC Higgs and LEP-2 WW data by itself do 
not constrain TGCs robustly due to each 
suffering from 1 flat direction in space of 3 
TGCs 

However, the flat directions are orthogonal 
and combined constraints lead to robust 
O(0.1) limits on aTGCs

TGC - Higgs Synergy
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In D=6 EFT, quartic gauge couplings involving W bosons receive corrections from 
the SM

QGC coefficients can be expressed by TGC ones 

The coe�cients of quartic gauge interactions are completely determined by those

of triple gauge interactions:

Lqgc = e2
�
W+

µ AµW
�
⌫ A⌫ �W+

µ W�
µ A⌫A⌫

�

+ (1 + �g1,z)
g2L
2

�
W+

µ W+
µ W�

⌫ W�
⌫ �W+

µ W�
µ W+

⌫ W�
⌫

�

+ (1 + �g1,z) g
2
Lc

2
✓

�
W+

µ ZµW
�
⌫ Z⌫ �W+

µ W�
µ Z⌫Z⌫

�

+ (1 + �g1,z) egLc✓
�
W+

µ ZµW
�
⌫ A⌫ +W+

µ AµW
�
⌫ Z⌫ � 2W+

µ W�
µ Z⌫A⌫

�

� g2L
2

�z

m2
W

�
W+

µ⌫W
�
⌫⇢ �W�

µ⌫W
+
⌫⇢

� �
W+

µ W�
⇢ �W�

µ W+
⇢

�

� g2Lc
2
✓

�z

m2
W

⇥
W+

µ

�
Zµ⌫W

�
⌫⇢ �W�

µ⌫Z⌫⇢

�
Z⇢ +W�

µ

�
Zµ⌫W

+
⌫⇢ �W+

µ⌫Z⌫⇢

�
Z⇢

⇤

� e2
�z

m2
W

⇥
W+

µ

�
Aµ⌫W

�
⌫⇢ �W�

µ⌫A⌫⇢

�
A⇢ +W�

µ

�
Aµ⌫W

+
⌫⇢ �W+

µ⌫A⌫⇢

�
A⇢

⇤

� egLc✓
�z

m2
W

⇥
W+

µ

�
Aµ⌫W

�
⌫⇢ �W�

µ⌫A⌫⇢

�
Z⇢ +W�

µ

�
Aµ⌫W

+
⌫⇢ �W+

µ⌫A⌫⇢

�
Z⇢

⇤

� egLc✓
�z

m2
W

⇥
W+

µ

�
Zµ⌫W

�
⌫⇢ �W�

µ⌫Z⌫⇢

�
A⇢ +W�

µ

�
Zµ⌫W

+
⌫⇢ �W+

µ⌫Z⌫⇢

�
A⇢

⇤

+ 3g3s
c4G
v2

fabcf cdeGa
µ⌫G

b
⌫⇢G

d
⇢G

e
µ + CPodd, (B.9)

where CP odd stands for analogous terms with �z ! �̃z, c4G ! c̃4G, and one of the

field strength tensors replaced by the dual one. The parameters in Eq. (B.9) can be

expressed by the corrections to the triple gauge couplings

�gW 4 = �gW 2Z2 = �gW 2ZA = �g1,z,

�W 4 = �W 2Z2 = �W 2A2 = �W 2AZ = �W 2ZA = �z,

c4G = c3G, (B.10)

and analogous formulas hold for the CP-odd couplings with � ! �̃ and c ! c̃.
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Quartic gauge couplings

In EFT with only D=6 operators, triple and quartic gauge couplings with only neutral 
gauge bosons (like ZZZ or ZZAA) do not arise 



Connection between operators and observables a bit obscured in Warsaw or SILH 
basis. Also, EW precision measurements place constraints on complicated linear 
combinations of Wilson coefficients.

For some applications, it may be simpler to work with couplings of mass eigenstate 
rather than Wilson coefficients of D=6 operators 

Higgs basis proposed  by LHCHXSWG2 uses subset of couplings in mass eigenstate 
Lagrangian to span D=6 basis.  Effectively, a rotation of any other D=6 basis

LHCHXSWG-INT-2015-001 Similar “EFT Primaries” of Gupta et al 1405.0181 

2499x2499 dimensional
transformation matrix

Linear 
transformation

2499 dimensional
vector of 

Wilson coefficients

2499 parameters
defining Higgs Basis

Relevant
for LHC Higgs

Very constrained
parameters

Irrelevant
for LHC Higgs

Higgs Basis



Higgs Basis - parameters
Instead of Wilson coefficients in some basis, use directly a subset of 

eigenstates couplings to parametrize the D=6 EFT space 

Higgs couplings to 
gauge bosons

Higgs couplings to
fermions

Triple gauge 
couplings

Vertex and mass 
Corrections

...........



Equivalent D=6 basis with TGC as parameters

Higgs couplings to 
gauge bosons

Higgs couplings to
fermions

Triple gauge 
couplings

Vertex and mass 
Corrections

...........

One can use relations between TGCs and Higgs couplings
to trade 3 Higgs couplings for 3 TGCs in basis definition

Many equivalent parametrizations exist. 
What stays unchanged is 1) physics, 2) number of parameters



TGC - Physical significance

ATGCs affect WW production. In particular, they change energy dependence of 
s-channel amplitudes and spoil unitarity cancellations,  thus leading to amplitudes 
growing with energy  

Note that similar effects are induced by vertex corrections δg

Different helicity amplitudes are affected by different combinations of aTGCs, 
therefore exploring s- and θ- dependence of WW production allows one, in 
principle, to simultaneously constrain all 3 CP-even ATGCs  

Leading O(1/Λ^2) (tree-level D=6 in EFT) corrections to total and differential 
partonic production cross section can be computed analytically  

Low-energy perspective
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Figure 1.4: Feynman diagrams (CC03) for the process e+e− → W+W− at the Born level.
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Figure 1.5: Feynman diagrams (NC02) for the process e+e− → ZZ at the Born level.
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Figure 1.6: Feynman diagrams for the process e+e− → WWγ and WWZ at the Born level
involving quartic electroweak-gauge-boson vertices.
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Figure 1.7: Vector-boson fusion diagrams for the single W/Z/γ process at the Born level.
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involving quartic electroweak-gauge-boson vertices.
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Figure 1.7: Vector-boson fusion diagrams for the single W/Z/γ process at the Born level.
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 ATGC and vertex corrections lead to WZ production amplitudes
growing with energy for s > mZ^2

Note that both longitudinal and transverse
amplitudes may be fast growing!
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ATGCs and δg arise as effective description of effects of heavy particles from 
beyond the SM 

δg and g1z can arise from tree-level new physics effects, e.g. from integrating 
out vector resonances mixing with W and/or Z bosons

δκγ and λz arise only at 1-loop level; note however that models where δg and  
g1z arise at tree-level are typically strongly constrained by EWPT, so  I 
personally see no strong motivation to ignore δκγ and λz for this reason

TGC - Physical significance

High-energy perspective



Example BSM Model #1: SU(2)L triplet vector

At the O(⇤�2) order in the EFT,

�(pp! W+(0)h)

�(pp! W+(0)h)
SM

⇡ 1 + 2�cw + 1.0cww + 8.3cw2 + 38�gWq
L

�(pp! W+(±1)h)

�(pp! W+(±1)h)
SM

⇡ 1 + 2�cw + 2.2cww + 5.4cw2 + 24�gWq
L (1.12)

Summing over the polarizations

�(pp! W+h)

�(pp! W+)h)
SM

⇡ 1 + 2�cw + 1.5cww + 6.9cw2 + 31�gWq
L

�(pp! W�h)

�(pp! W�)h)
SM

⇡ 1 + 2�cw + 1.5cww + 6.6cw2 + 30�gWq
L

�(pp! Wh)

�(pp! W )h)
SM

⇡ 1 + 2�cw + 1.5cww + 6.8cw2 + 31�gWq
L (1.13)

Note there are small di↵erences between the EFT dependence of the W+ and W� cross
section, however they are probably of similar order as the PDF uncertainties. Small
di↵erences with the results in [2] (6.8 vs 6.5 for the linear coe�cient of the box term)
are, I think, due to di↵erent PDFs used.

2 Vector Triplet Model

2.1 Definition and Notation

We consider the SM supplemented with a vector triplet V i
µ, i = 1 . . . 3, borrowing a lot

from Ref. [3]. The BSM part of the Lagrangian is

�L = �1

4
V i
µ⌫V

i
µ⌫ +

m2

V

2
V i
µV

i
µ

+
i

2
gLHV

i
µH

†�i !DµH +
gL
2
V i
µq,J f̄J�

i�̄µfJ + . . . (2.1)

where J = 1 . . . 3 is the flavor index, the dots at the end stand for terms with 2 or more
V ’s, and

V i
µ⌫ = DµV

i
⌫ �D⌫V

i
µ, DµV

i
⌫ = @µV

i
⌫ + gL✏

ijkW j
µV

k
⌫ ,

H†�i !DµH = H†�iDµH �DµH
†�iH. (2.2)

Note that the heavy vector couples only to quarks in Eq. (2.1). Coupling to leptons
can be introduced analogously, but that complication is not necessary for our purpose,
and here I will restrict to the simpler case where couplings to leptons are set to zero.
If the model is an e↵ective description of composite Higgs then one expects the scaling
H ⇠ g⇤/gL, q ⇠ gL/g⇤. However, I will not be very religious about the couplings
satisfying the composite Higgs scaling.

4

W+,V+

2.3 Matching to EFT

Now I will match this model to low-energy EFT below the triplet mass. At tree-level we
can integrate out V by solving it’s equation of motion and plugging back the solution
back to the Lagrangian. At the lowest order in p2 the solution is

V i
µ = � gL

m2

V

✓
i

2
HH

†�i !DµH +
1

2
q,J q̄J�

i�̄µqJ

◆
(2.14)

Plugging this back yields the e↵ective Lagrangian

L
e↵

= L
SM

� g2L
8m2

V

⇣
iHH

†�i !DµH + q,J q̄J�
i�̄µqJ

⌘
2

+O(m�4

V ) (2.15)

I ignore O(m�4

V ) and higher order terms which correspond to d = 8 and higher terms in

the e↵ective theory. (Note that there is the dimension-8 operators (H†�i !DµH)2(H†�i !DµH)
that contributes to S). Now, defining the dimension-6 operators (here i, j are the flavor
indices):

O0
T =

1

v2

⇣
H†�k !DµH

⌘
2

[O0
Hq]JJ =

i

v2

⇣
H†�i !DµH

⌘ �
q̄J�

i�̄µqJ
�

[O0
qq]IIJJ =

1

v2
�
q̄I�

i�̄µqI
� �

q̄J�
i�̄µqJ

�
(2.16)

we get that their Wilson coe�cients are

c0T = 2

H

g2Lv
2

8m2

V

[c0Hq]JJ = �Hq,J
g2Lv

2

4m2

V

[c0qq]IIII = �q,Iq,J
g2Lv

2

8m2

V

[c0qq]IIJJ = �q,Iq,J
g2Lv

2

4m2

V

, I < J (2.17)

In order to relate this to the popular bases of d=6 operators, such as the Warsaw or
SILH basis, we need used operators identities to get rid of O0

T and O0
`` who are not part

of these bases. We need

O0
T = 3OH � 8�O

6H + 2
p
2

X

f2u,d,e

X

J

[Of ]JJ , (2.18)

where I use the operator definition and normalization from Ref. [1]. Using this, we can
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Low Energy EFT Lagrangian:

obtain the Wilson coe�cients in the Warsaw basis

cH =
3g2Lv

22

H

8m2

V

[cf ]IJ =
g2Lv

22

H

2
p
2m2

V

�IJ

[c0Hq]JJ = �Hq,J
g2Lv

2

4m2

V

[c0qq]JJJJ = �2

q,J

g2Lv
2

8m2

V

[c0qq]IIJJ = �q,Iq,J
g2Lv

2

4m2

V

, I < J (2.19)

where I didn’t display the Wilson coe�cients of O
6H . Now, using the map from the

Warsaw to Higgs basis [1], I can relate the parameters of the simplified model to the
observables parameters, such as the W mass, vertex, and Higgs couplings corrections. I
get

�cw = �cz = �3g2Lv
2

8m2

V

2

H

�yf = �g2Lv
2

8m2

V

2

H

[�gZu
L ]JJ = �[�gZd

L ]JJ = �g2Lv
2

8m2

V

Hq,J

[�gWq
L ]JJ = �g2Lv

2

4m2

V

Hq,J (2.20)

and the remaining parameters are zero at the tree level. Note that, since �gWq is non-
zero, this model yields an O(s) growth of the longitudinal qq ! Wh amplitude in the
low-energy EFT, see Eq. (1.10).

We have all the ingredients to compare the EFT description of WH production with
that in the full model with the SU(2)L triplet. An example is shown in Fig. 1. I plot
longitudinal W production, but the results for transverse W’s are very similar. I picked
two parameter points in the UV model with di↵erent coupling strength that yield the
same EFT parameters. The main point is to compare EFT for strongly coupled and
weakly coupled UV completions. I plotted separately the linear (O(⇤�2)) EFT predic-
tions when the quadratic corrections in the EFT parameters are ignored, and compared
it to the EFT predictions when the quadratic terms are retained. The conclusions agree
with those in Ref. [4]. In all cases, the EFT is a very good approximation of the UV
theory for

p
s ⌧ mV . As the collision energy approaches mV , the EFT and the full

description start to diverge. For the weakly coupled UV completion (represented by the
 = 1 case in the plot), the divergence point coincides with the point where the linear
and quadratic EFT approximations diverge. From the EFT perspective, this happens
because D=8 operators can no longer be neglected. Thus, comparing the D=6 linear
and quadratic EFT approximations is in this case a good rule of thumb to estimate the
validity of the EFT. Note however that for even weaker couplings (represented by the

8

I will also need the interactions of electroweak gauge bosons with fermions defined
as

L
vertex

=
gLp
2

⇣
W+

µ ⌫̄�̄µ(I + �gW `
L )e+W+

µ ū�̄µ(VCKM

+ �gWq
L )d+W+

µ uc�µ�g
Wq
R d̄c + h.c.

⌘

+
q

g2L + g2YZµ

"
X

f2u,d,e,⌫

f̄ �̄µ(T
3

f � s2✓Qf + �gZf
L )f +

X

f2u,d,e

f c�µ(�s2✓Qf + �gZf
R )f̄ c

#
,

(1.4)

where all the �g are 3⇥ 3 Hermitian matrices in the generation space, except for �gWq
R

which is a general 3⇥3 complex matrix. Not all vertex corrections are independent in the
dimension-6 Lagrangian: the vertex corrections to W boson interactions are determined
by the vertex corrections to the Z interactions. In the Higgs basis, the dependent ones
are

�gZ⌫
L = �gZe

L + �gW `
L , �gWq

L = �gZu
L V

CKM

� V
CKM

�gZd
L . (1.5)

Finally, I will need the contact hV ff interactions. In the Higgs basis, the coe�cients
of these interactions are equal to the vertex corrections in Eq. (1.4):

L
hv↵

=
p
2gL

h

v

⇣
W+

µ ⌫̄�̄µ�g
W `
L e+W+

µ ū�̄µ�g
Wq
L d+W+

µ uc�µ�g
Wq
R d̄c + h.c.

⌘

+ 2
q

g2L + g2YZµ

"
X

f2u,d,e,⌫

f̄ �̄µ�g
Zf
L f +

X

f2u,d,e

f c�µ�g
Zf
R f̄ c

#
,

(1.6)

1.2 Amplitudes

I have a look now at the helicity amplitudes for V H production to study unitarity
violation. Consider the process ud̄ ! W + h. I parametrize the parton kinematics as

p
1

=

p
s

2
(1, 0, 0, 1)

p
2

=

p
s

2
(1, 0, 0,�1)

k
1

=

p
s

2

✓
1 +

m2

h �m2

W

s
,� sin ✓, 0,� cos ✓

◆

k
2

=

p
s

2

✓
1� m2

h �m2

W

s
,�� sin ✓, 0,� cos ✓

◆

� =

s✓
1� m2

h +m2

W

s

◆
2

� 4m2

hm
2

W

s2
(1.7)

2

Here, coupled do quarks only

EWPT constraints:

(1st generation quark couplings only)

(flavor universal quark couplings)



BSM vs EFT description of WZ production
Compare WZ production calculated in:
- (Black): model with SU(2)L triplet of heavy vector resonances
- (Red): in corresponding D=6 EFT at O(1/Λ^2)
- (Purple): in corresponding D=6 EFT keeping also quadratic O(1/Λ^4) terms
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mV=2 TeV
κ=1

mV=1 TeV
κ=1/2

mV=6 TeV
κ=3

  Weak coupling:
- “Truth” well approximated by EFT for E<<Λ
- EFT starts to diverge for E approaching Λ, 
due to D=8 operators becoming non-negligible

 Strong couplings
- For same Λ, larger range where “Truth” 
well approximated by EFT
- When NP >> SM  linear approximation is 
useless,  but quadratic is still OK

All 3 benchmark points 
correspond to same EFT with 



Fun fact: in this model the resonance contribution to qq ! WW/Z enters only
at O(⇤�4) = O(m�4

V ), because the resonance couplings WW/WZ are suppressed by
m2

W/m2
V . At O(⇤�2), the whole non-unitary (increasing with energy) behavior visible

in Fig. 1 is due to the vertex corrections that spoil the unitarity cancellations between
the s-channel W exchange and t/u channel quark exchange. This is di↵erent than for
VH production in the same model, where the s-channel resonance exchange contribution
enters at O(⇤�2) = O(m�2

V ), and is mimicked in the EFT by the hW/Zqq contact
interaction.

3 Frankenstein Model

The goal is to construct a model where �g1,z is generated at tree-level without large
contributions to electroweak precision observables. It’s not gonna be pretty.

I consider the SM extended by the following degrees of freedom:

• A vector triplet V i
µ, i = 1 . . . 3 transforming as an adjoint under the SM SU(2)L,

• A vector singlet V 0
µ .

For simplicity, I’m assuming the triplet and the singlet have the same massmV , although
the model works the same if it’s not the case. The Lagrangian describing the vectors is
given by

�L = �1

4
V i
µ⌫V

i
µ⌫ �

1

4
V 0
µ⌫V

0
µ⌫ +

m2
V

2
V i
µV

i
µ +

m2
V

2
V 0
µ V

0
µ

� i

2
gLHV

0
µH

† !DµH + gLV
0
µ

X

f2`,q

fYf f̄ �̄µf + gLV
0
µ

X

f2e,u,d

fYf̄cf c�µf̄
c

+
i

2
gL

0
HV

i
µH

†�i !DµH +
gL
2
V i
µ

X

f2`,q

0
f f̄�

i�̄µf, (3.1)

V i
µ⌫ = DµV

i
⌫ �D⌫V

i
µ, DµV

i
⌫ = @µV

i
⌫ + gL✏

ijkW j
µV

k
⌫ ,

H†�i !DµH = H†�iDµH �DµH
†�iH,

H† !DµH = H†DµH �DµH
†H. (3.2)

3.1 EFT

To derive the low-energy EFT of this model at tree-level, we can integrate out V ’s by
solving their equation of motion and plugging back the solution back to the Lagrangian.
At the D=6 level I get the following e↵ective Lagrangian.

Le↵ = LSM � g2L
8m2

V

 
i0

HH
†�i !DµH +

X

f2`,q

0
f f̄�

i�̄µf

!2

� g2L
8m2

V

 
iHH

† !DµH �
X

f2`,q

fYf f̄�
i�̄µf �

X

f2e,u,d

fYf̄cf c�µf̄
c

!2

+O(m�4
V )(3.3)
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Example 2: SU(2)xU(1) model with only TGC 

It is easy to match these operators to the Warsaw basis (see [1] for my conventions and
normalizations). The 2 operators who are not in the Warsaw basis,

O0
T =

1

v2

⇣
H†�k !DµH

⌘2

[O0
f ]IIJJ =

1

v2
�
f̄I�

i�̄µfI
� �
 ̄J�

i�̄µ J

�
(3.4)

can be eliminated using

[O0
``]IIJJ = 2[O``]IJJI � [O``]IIJJ ,

O0
T = 3OH � 8�O6H + 2

p
2

X

f2u,d,e

X

J

[Of ]JJ , (3.5)

At the end of the day, the Wilson coe�cients in the Warsaw basis are given by

cT = 2H
m2

W

2m2
V

cH = 02H
3m2

W

2m2
V

c6H = �02H
4�m2

W

m2
V

[cf ]IJ = 02H

p
2m2

W

m2
V

�IJ , f = e, u, d (3.6)

[c0Hf ]JJ = �0H0f
m2

W

m2
V

�IJ f = `, q

[cHf ]JJ = 2HfYf
m2

W

m2
V

�IJ f = e, u, d (3.7)

[c``]1221 =
��202` + x

� m2
W

m2
V

(3.8)

Although many 4-fermion operators are generated, I only displayed the one that is
relevant for pole observables. Except the contribution from the resonance triplet, I also
assumed another contribution from the 5th element which is parametrized by x. This
could come from another triplet of resonances that couples to leptons but does not mix
with the SM gauge bosons (that is to say, it does not couple to the Higgs current). I
will also tacitly assume that after taking into account the contributions from the 5th
element sector, all 4-fermion operators that are tightly constrained by precision tests
(e.g. in LEP-2) are fine-tuned away.

Now, choosing (fine-tuning) the resonance couplings as

0f = � g2L
2g2Y

2H
0H

, f = `, q

f = �H
2
, f = `, q, e, u, d

x =
g4L
2g4Y

4H
02H

, (3.9)
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+ fine-tuned contribution to GF
Tunings cancel *all* vertex 
and W mass corrections all leptonic and quark vertex corrections �g are zero, and the W mass correction �m

vanishes as well. At the same time, some EFT parameters in the gauge and Higgs
sectors remain non-zero. In particular, we get the TGC:

�g1,z = �2
H

g2L + g2Y
2g2Y

m2
W

m2
V

(3.10)

while �� = �z = 0 at tree level. Furthermore, the corrections to the Higgs couplings
are given by

�cw = �cz = �3(g2L
2
H + g2Y 

02
H)

2g2Y

m2
W

m2
V

�yf = �g2L
2
H + g2Y 

02
H

2g2Y

m2
W

m2
V

cw2 =
2
H

g2Y

m2
W

m2
V

cz2 = 2
H

g2L � g2Y
g2Lg

2
Y

m2
W

m2
V

c�2 =
22

H

g2Y

m2
W

m2
V

(3.11)

and the remaining Higgs couplings are zero at tree level:

cgg = c�� = cz� = czz = cww = 0 (3.12)

Note that this construction (non-zero �g1,z, zero vertex and mW correction) requires
that both H and 0

H are non-zero. This shows that it cannot work in a model with only
SU(2)L or only U(1)Y resonances.

3.2 Mass Eigenstates

I will now write down the mass eigenstates in the SU(2) ⇥ U(1) model, where the
parameters satisfy Eq. (3.9).

For the charged vectors, the mixing between the SM and the resonances is given by

0
H

g2Lv
2

4

2X

i=1

V i
µW

i
µ (3.13)

The rotation to eigenstates is the same as in the SU(2)L model:

V ±
µ ! cos↵cṼ

±
µ � sin↵cW̃

±
µ

W±
µ ! sin↵cṼ

±
µ + cos↵W̃±

µ

tan 2↵c =
2g2Lv

20
H

4m2
V � g2Lv

2

↵c ⇡ 0
H

g2Lv
2

4m2
V

⇡ 0
H

m2
W

m2
V

(3.14)
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Low Energy EFT:

all leptonic and quark vertex corrections �g are zero, and the W mass correction �m
vanishes as well. At the same time, some EFT parameters in the gauge and Higgs
sectors remain non-zero. In particular, we get the TGC:

�g1,z = �2
H

g2L + g2Y
2g2Y

m2
W

m2
V

(3.10)

while �� = �z = 0 at tree level. Furthermore, the corrections to the Higgs couplings
are given by

�cw = �cz = �3(g2L
2
H + g2Y 

02
H)

2g2Y

m2
W

m2
V

�yf = �g2L
2
H + g2Y 

02
H

2g2Y

m2
W

m2
V

cw2 =
2
H

g2Y

m2
W

m2
V

cz2 = 2
H

g2L � g2Y
g2Lg

2
Y

m2
W

m2
V

c�2 =
22

H

g2Y

m2
W

m2
V

(3.11)

and the remaining Higgs couplings are zero at tree level:

cgg = c�� = cz� = czz = cww = 0 (3.12)

Note that this construction (non-zero �g1,z, zero vertex and mW correction) requires
that both H and 0

H are non-zero. This shows that it cannot work in a model with only
SU(2)L or only U(1)Y resonances.

3.2 Mass Eigenstates

I will now write down the mass eigenstates in the SU(2) ⇥ U(1) model, where the
parameters satisfy Eq. (3.9).

For the charged vectors, the mixing between the SM and the resonances is given by

0
H

g2Lv
2

4

2X

i=1

V i
µW

i
µ (3.13)

The rotation to eigenstates is the same as in the SU(2)L model:

V ±
µ ! cos↵cṼ

±
µ � sin↵cW̃

±
µ

W±
µ ! sin↵cṼ

±
µ + cos↵W̃±

µ

tan 2↵c =
2g2Lv

20
H

4m2
V � g2Lv

2

↵c ⇡ 0
H

g2Lv
2

4m2
V

⇡ 0
H

m2
W

m2
V

(3.14)

11



Compare WZ production calculated in:
- (Black): model with SU(2)LxU(1)Y triplet and singlet heavy vector resonances
- (Red): in corresponding D=6 EFT at O(1/Λ^2)
- (Purple): in corresponding D=6 EFT keeping also quadratic O(1/Λ^4) terms

  Weak coupling:
- “Truth” well approximated by EFT for E<<Λ
- EFT starts to diverge for E approaching Λ, 
due to D=8 operators becoming non-negligible

 Strong couplings
- For same Λ, larger range where “Truth” 
well approximated by EFT
- When NP >> SM  linear approximation is 
useless,  but quadratic is still OK22

mV=2 TeV
κ=1.5

mV=1 TeV
κ=0.75

mV=6 TeV
κ=3

WZ production in SU(2)xU(1) model

All 3 benchmark points 
correspond to same EFT with 



The range of center-of-mass energies of partonic collisions used in the analysis 
should be restricted as E<Λ for several choices of Λ, and results should be 
quoted as function of Λ    

Likelihood should be given for all 3 aTGCs simultaneously, together with the 
correlation matrix. In the best of all worlds, 5D likelihood for 3ATGC and 2 light 
quark vertex corrections 

Analysis should be performed 1) consistently at O(1/Λ^2) in the EFT expansion, 
and 2) keeping also the contribution quadratic in Wilson coefficients of D=6 
operators, and the two results should be compared

Conclusions for TGC at LHC

This kind of presentation will allow theorists to use TGC 
constraints from LHC to probe much larger class of BSM 

models, and to consistently combine TGC and Higgs constraints
23

Any parametrization is good (ATGC, D=6 HISZ operators, D=6 SILH operators), as long as 
*all* D=6 operators contributing to diboson production  are taken into account. This means 
number of parameters probed may vary for different bases, but number of probed *linear 
combinations* of parameters is always the same



Back-up
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The operators in the Warsaw basis are listed in Tables 2.2, 2.3, and 2.4. My

choice of operators here di↵ers slightly from the one in Ref. [15] in that the operator

|H†DµH|2 is replaced by OT = (H† !DµH)2, where the anti-symmetrized derivative is

defined in Eq. (2.12). Furthermore, for Yukawa-type operators H|H|2f̄f I subtracted

v2 from |H|2 in the definition, so that they do not contribute to fermion mass terms.6

Finally, the notation and normalizations also di↵er from that in the original reference.

In order to illustrate the freedom of choosing a basis of operators, I will now

describe how to go from the Warsaw to the SILH basis. The bosonic operators in the

6This way one avoids tedious rotations of the fermion fields to bring them back to the mass
eigenstate basis. Starting with the Yukawa couplings �Hf̄ 0

R(Y
0
f + c0fH

†H/v2)f 0
L we can bring them

to the form in Eq. (2.2) and Table 2.3 by defining f 0
L,R = UL,RfL,R,

p
mimj [cf ]ij/v = [U†

Rc
0
fUL]ij ,

Yf = U†
R(Y

0
f + c0f/2)UL, where UL,R are unitary rotations to the mass eigenstate basis.

Yukawa

[Oe]IJ �(H†H � v2

2 )
p
mImJ

v ecIH
†`J

[Ou]IJ �(H†H � v2

2 )
p
mImJ

v ucI
eH†qJ

[Od]IJ �(H†H � v2

2 )
p
mImJ

v dcIH
†qJ

Vertex

[OH`]IJ i¯̀I �̄µ`JH† !DµH

[O0
H`]IJ i¯̀I�i�̄µ`JH†�i !DµH

[OHe]IJ iecI�µē
c
JH

† !DµH

[OHq]IJ iq̄I �̄µqJH† !DµH

[O0
Hq]IJ iq̄I�i�̄µqJH†�i !DµH

[OHu]IJ iucI�µū
c
JH

† !DµH

[OHd]IJ idcI�µd̄
c
JH

† !DµH

[OHud]IJ iucI�µd̄
c
JH̃

†DµH

Dipole

[OeW ]IJ
p
mImJ

v ecI�µ⌫H
†�i`JW i

µ⌫

[OeB]IJ
p
mImJ

v ecI�µ⌫H
†`JBµ⌫

[OuG]IJ
p
mImJ

v ucI�µ⌫T
a eH†qJ Ga

µ⌫

[OuW ]IJ
p
mImJ

v ucI�µ⌫
eH†�iqJ W i

µ⌫

[OuB]IJ
p
mImJ

v ucI�µ⌫
eH†qJ Bµ⌫

[OdG]IJ
p
mImJ

v dcI�µ⌫T
aH†qJ Ga

µ⌫

[OdW ]IJ
p
mImJ

v dcI�µ⌫H̄
†�iqJ W i

µ⌫

[OdB]IJ
p
mImJ

v dcI�µ⌫H
†qJ Bµ⌫

Table 2.3: Two-fermion D=6 operators in the Warsaw basis. Here, I, J are the
flavor indices. For complex operators (OHud and all Yukawa and dipole operators)
the corresponding complex conjugate operator is included as well.
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Example: Warsaw Basis
59 different

 kinds of operators,
of which 17 are complex  

Grządkowski et al.
 1008.4884

2499 distinct operators, 
including flavor structure

 and CP conjugates
Alonso et al 1312.2014

Note that construction of one complete basis is a qualitative tour de force, as

now any other basis can be systematically derived by transforming operators from

the Warsaw basis. Another popular choice of operators is the so-called SILH ba-

sis5 which was proposed in Ref. [36] and completed in Ref. [37]. Finally, Ref. [38]

proposed a slightly di↵erent (but fully equivalent) way to parametrize the space of

D=6 operators using a subset of couplings characterizing the interactions of mass

eigenstates in the e↵ective Lagrangian. It should be stressed that any complete ba-

sis leads to equivalent predictions concerning possible new contributions to physics

observables. Nevertheless, working with di↵erent basis may be more convenient for

specific applications.

In the following we first introduce the Warsaw basis ofD=6 operators, and then we

discuss the transformation from the Warsaw to the SILH basis. Later in Section 2.4

I will discuss another basis choice which, in my opinion, is particularly convenient for

calculating EFT predictions for collider observables.

Bosonic CP-even

OH

⇥
@µ(H†H)

⇤2

OT

⇣
H† !DµH

⌘2

O6H �(H†H)3

OGG H†H Ga
µ⌫G

a
µ⌫

OWW H†HW i
µ⌫W

i
µ⌫

OBB H†H Bµ⌫Bµ⌫

OWB H†�iHW i
µ⌫Bµ⌫

O3W ✏ijkW i
µ⌫W

j
⌫⇢W k

⇢µ

O3G fabcGa
µ⌫G

b
⌫⇢G

c
⇢µ

Bosonic CP-odd

OgGG
H†H eGa

µ⌫G
a
µ⌫

O]WW
H†H fW i

µ⌫W
i
µ⌫

OgBB
H†H eBµ⌫Bµ⌫

OgWB
H†�iH fW i

µ⌫Bµ⌫

Og3W ✏ijkfW i
µ⌫W

j
⌫⇢W k

⇢µ

Of3G fabc eGa
µ⌫G

b
⌫⇢G

c
⇢µ

Table 2.2: Bosonic d = 6 operators in the Warsaw basis.

5SILH stands for Strongly Interacting Light Higgs, because this operator basis is more convenient
to describe BSM theories strongly interacting sectors from which the Higgs double emerges as a light
composite state.
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+4 fermion 
operators

http://arxiv.org/abs/1303.3876
http://arxiv.org/abs/1303.3876


The operators in the Warsaw basis are listed in Tables 2.2, 2.3, and 2.4. My

choice of operators here di↵ers slightly from the one in Ref. [15] in that the operator

|H†DµH|2 is replaced by OT = (H† !DµH)2, where the anti-symmetrized derivative is

defined in Eq. (2.12). Furthermore, for Yukawa-type operators H|H|2f̄f I subtracted

v2 from |H|2 in the definition, so that they do not contribute to fermion mass terms.6

Finally, the notation and normalizations also di↵er from that in the original reference.

In order to illustrate the freedom of choosing a basis of operators, I will now

describe how to go from the Warsaw to the SILH basis. The bosonic operators in the

6This way one avoids tedious rotations of the fermion fields to bring them back to the mass
eigenstate basis. Starting with the Yukawa couplings �Hf̄ 0

R(Y
0
f + c0fH

†H/v2)f 0
L we can bring them

to the form in Eq. (2.2) and Table 2.3 by defining f 0
L,R = UL,RfL,R,

p
mimj [cf ]ij/v = [U†

Rc
0
fUL]ij ,

Yf = U†
R(Y

0
f + c0f/2)UL, where UL,R are unitary rotations to the mass eigenstate basis.

Yukawa

[Oe]IJ �(H†H � v2

2 )
p
mImJ

v ecIH
†`J

[Ou]IJ �(H†H � v2

2 )
p
mImJ

v ucI
eH†qJ

[Od]IJ �(H†H � v2

2 )
p
mImJ

v dcIH
†qJ

Vertex

[OH`]IJ i¯̀I �̄µ`JH† !DµH

[O0
H`]IJ i¯̀I�i�̄µ`JH†�i !DµH

[OHe]IJ iecI�µē
c
JH

† !DµH

[OHq]IJ iq̄I �̄µqJH† !DµH

[O0
Hq]IJ iq̄I�i�̄µqJH†�i !DµH

[OHu]IJ iucI�µū
c
JH

† !DµH

[OHd]IJ idcI�µd̄
c
JH

† !DµH

[OHud]IJ iucI�µd̄
c
JH̃

†DµH

Dipole

[OeW ]IJ
p
mImJ

v ecI�µ⌫H
†�i`JW i

µ⌫

[OeB]IJ
p
mImJ

v ecI�µ⌫H
†`JBµ⌫

[OuG]IJ
p
mImJ

v ucI�µ⌫T
a eH†qJ Ga

µ⌫

[OuW ]IJ
p
mImJ

v ucI�µ⌫
eH†�iqJ W i

µ⌫

[OuB]IJ
p
mImJ

v ucI�µ⌫
eH†qJ Bµ⌫

[OdG]IJ
p
mImJ

v dcI�µ⌫T
aH†qJ Ga

µ⌫

[OdW ]IJ
p
mImJ

v dcI�µ⌫H̄
†�iqJ W i

µ⌫

[OdB]IJ
p
mImJ

v dcI�µ⌫H
†qJ Bµ⌫

Table 2.3: Two-fermion D=6 operators in the Warsaw basis. Here, I, J are the
flavor indices. For complex operators (OHud and all Yukawa and dipole operators)
the corresponding complex conjugate operator is included as well.
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Example: SILH Basis

+4 fermion 
operators

Giudice et al  hep-ph/0703164
Contino et al 1303.3876 

bosonic operators OWW , O]WW
, OWB, OgWB, 2 vertex operators [OH`]11, [O0

H`]11, and

3 four-fermion operators [O``]1221, [O``]1122, [O0
uu]3333.

8 The remaining operators are

the same as in the Warsaw basis.

One can derive the translation between the two bases by transforming the opera-

tors in Eq. (2.19) using integration by parts, Fierz transformations, and field redefini-

tions, until one arrives at a set contained in the Warsaw basis. This way, one obtains

8In Ref. [37] flavor indices of the absent operators are not specified. The somewhat arbitrary
choice of these indices made here follows Ref. [26].

Bosonic CP-even

OH

⇥
@µ(H†H)

⇤2

OT

⇣
H† !DµH

⌘2

O6H (H†H)3

OGG H†H Ga
µ⌫G

a
µ⌫

OBB H†H Bµ⌫Bµ⌫

OW
i
2

⇣
H†�i !DµH

⌘
D⌫W i

µ⌫

OB
i
2

⇣
H† !DµH

⌘
@⌫Bµ⌫

OHW i
�
DµH†�iD⌫H

�
W i

µ⌫

OHB i
�
DµH†D⌫H

�
Bµ⌫

O2W
1
g2L
DµW i

µ⌫D⇢W i
⇢⌫

O2B
1
g2Y

@µBµ⌫@⇢B⇢⌫

O2G
1
g2s
DµGa

µ⌫D⇢Ga
⇢⌫

O3W ✏ijkW i
µ⌫W

j
⌫⇢W k

⇢µ

O3G fabcGa
µ⌫G

b
⌫⇢G

c
⇢µ

Bosonic CP-odd

OgGG
H†H eGa

µ⌫G
a
µ⌫

OgBB
H†H eBµ⌫Bµ⌫

OgHW
i
�
DµH†�iD⌫H

�fW i
µ⌫

OgHB
i
�
DµH†D⌫H

� eBµ⌫

Og3W ✏ijkfW i
µ⌫W

j
⌫⇢W k

⇢µ

Of3G fabc eGa
µ⌫G

b
⌫⇢G

c
⇢µ

Table 2.5: Bosonic D=6 operators in the SILH basis.
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More bosonic operators, 
at the expense of some 2-fermion 

and 4-fermion operators
Total still adds up to 2499 

http://arxiv.org/abs/hep-ph/0703164
http://arxiv.org/abs/hep-ph/0703164
http://arxiv.org/abs/arXiv:1303.3876
http://arxiv.org/abs/arXiv:1303.3876


Constraints on vertex correctionsEfrati,AA,Soreq
1503.07872

• The electroweak parameters (that we need to evaluate new physics corrections) are extracted
at tree-level from the muon lifetime ⌧µ = 384⇡3v4/m5

µ (equivalently, from the Fermi constant

GF = 1/
p
2v2), the electromagnetic constant ↵(mZ) = e2/4⇡, and the Z boson mass mZ =p

g2L + g2Y v/2. With this choice, the tree-level values of the electroweak parameters are
gL = 0.648, gY = 0.358, and v = 246.2 GeV.

• We work at the level of dimension-6 operators and we neglect possible contributions of
dimension-8 operators. Consistently, for observables where the SM contribution is non-zero,
we only include the leading corrections that are formally O(v2/⇤2) in EFT counting. These
come from interference terms between new physics and SM contributions to the amplitudes
of relevant processes, and they are linear in �m and �g. Quadratic corrections in �g and �m
are in this case neglected, since they are formally of order O(v4/⇤4), much as contributions
from neglected dimension-8 operators. On the other hand, for observables where the SM
contribution vanishes (such as lepton- or quark-flavor violating Z decays), we take into ac-
count quadratic corrections in �g because they are the leading ones. In these case, possible
corrections from dimension-8 operators are of order O(v6/⇤6).

• We ignore all loop-suppressed e↵ects proportional to �g and �m. In particular, we only take
into account the interference terms between tree-level new physics corrections and tree-level
SM contributions, while we ignore the interference with loop-level SM contributions. This is
the largest source of uncertainty on the central values and standard deviations of �g and �m
that we quote below. From the magnitude of the k-factors between the tree-level and NNLO
SM predictions, we estimate this uncertainty to be of order 15%.

• All the observables in Table 1 and Table 2 are measured for Z or W boson close to the
mass shell. Thanks to that, we can ignore the contribution of 4-fermion operators, which is
suppressed by �Z/mZ or �W/mW . For a longer discussion of this point see Ref. [16].

First, from the measurement of the W mass we can directly derive the constraint on �m:

�m = (2.6± 1.9) · 10�4. (3.1)

The constraints on �g’s are far more entangled. We take into account only the corrections to the
pole observables that are linear in �g, while quadratic terms, formally higher-order in the e↵ective
theory expansion, are neglected. We also neglect CKM-suppressed corrections. This way, the pole
observables depend only on diagonal elements of �g. Furthermore, corrections proportional to �gWq

R

do not interfere with the SM amplitudes; therefore they enter only quadratically and are neglected.
All in all, at the tree level, the pole observables depend linearly on 3 ⇥ 7 = 21 diagonal elements
of �gZe

L , �gZe
R , �gW `

L , �gZu
L , �gZu

R , �gZd
L , �gZd

R . All these couplings are simultaneously constrained by
the the observables Oi listed in Table 1 and Table 2. To construct a global �2 function, we write
the observables as

Oi,th = ONNLO
i,SM + ~�g · ~OLO

i,BSM (3.2)

The state-of-art SM predictions ONNLO
i,SM are provided in the literature, while the tree-level new

physics corrections ~�g ~OLO
i,BSM linear �g is computed analytically. Then we construct the �2 function

as
�2 =

X

ij

[Oi,exp �Oi,th] �
�2
ij [Oj,exp �Oj,th] , (3.3)
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Next, we derive the constraints on the δg’s when all of them are simultaneously present and
a-priori unrelated by the UV theory. Minimizing our χ2 function with respect to δg we obtain the
following central values and 1σ errors:

[δgWe
L ]ii =




−1.00± 0.64
−1.36± 0.59
1.95± 0.79



× 10−2, (4.5)

[δgZe
L ]ii =




−0.26± 0.28
0.1± 1.1
0.16± 0.58



× 10−3, [δgZe
R ]ii =




−0.37± 0.27
0.0± 1.3
0.39± 0.62



× 10−3, (4.6)

[δgZu
L ]ii =




−0.8± 3.1
−0.16± 0.36
−0.28± 3.8



× 10−2, [δgZu
R ]ii =




1.3± 5.1
−0.38± 0.51

×



× 10−2, (4.7)

[δgZd
L ]ii =




−1.0± 4.4
0.9± 2.8
0.33± 0.16



× 10−2, [δgZd
R ]ii =




2.9± 16
3.5± 5.0
2.30± 0.82



× 10−2. (4.8)

The corresponding 20× 20 correlation matrix is given in Appendix B.
As for the off diagonal couplings, we find:

√
|[δgZe

L ]12|2 + |[δgZe
R ]12|2 < 1.2× 10−3,

√
|[δgZe

L ]13|2 + |[δgZe
R ]13|2 < 4.3× 10−3,

√
|[δgZe

L ]23|2 + |[δgZe
R ]23|2 < 4.8× 10−3, (4.9)

where the measured central value of the Z width is used and

√
|[δgZu

L ]13|2 + |[δgZu
R ]13|2 + |[δgZu

L ]23|2 + |[δgZu
R ]23|2 < 1.6× 10−2

(
Γt

1.35GeV

)1/2

, (4.10)

at the 95% CL. Here we take ΓSM
t # 1.35GeV for mt = 173 GeV [53].

Using the above central values δg0, uncertainties δgσ and the correlation matrix ρ one can
reconstruct the dependence of the global χ2 function on the vertex corrections:

χ2 =
∑

ij

[δg − δg0]iσ
−2
ij [δg − δg0]j , (4.11)

where σ−2
ij = [[δgσ]iρij [δgσ]j]−1. In specific extensions of the SM, the vertex corrections will be

functions of a (typically smaller) number of the model parameters. In this case, the global χ2

function can be minimized with respect to the new parameters, and thus limits on this particular
model can be obtained. This way our results can be used to obtain the constraints on any specific
UV model.

From our results for the vertex corrections, Eq. (4.5)–Eq. (4.8), we learn the following:

• Globally, the fit is in a very good agreement with the SM, corresponding to the p-value of
order 40%.
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Higgs couplings to gauge bosons 
described  by 6 CP even and 4 
CP odd parameters that are 
unconstrained by LEP-1

D=6 EFT with linearly realized 
SU(3)xSU(2)xU(1) enforces 
relations between Higgs 
couplings to gauge bosons 
(otherwise, more parameters) 

Corrections to Higgs Yukawa 
couplings to fermions are also 
unconstrained by EWPT

Apart from δm and δg, 
additional 6+3x3x3 CP-even 
and 4+3x3x3 CP-odd 
parameters to parametrize
LHC Higgs physics

Higgs couplings to matter

relative correction to W mass

LHCHXSWG-INT-2015-001 
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