2nd PACMAN Workshop Debrecen, Hungary, June 2016

Advances on magnetic measurements by stretched wires at the ESRF

Gaël Le Bec (lebec@esrf.fr)

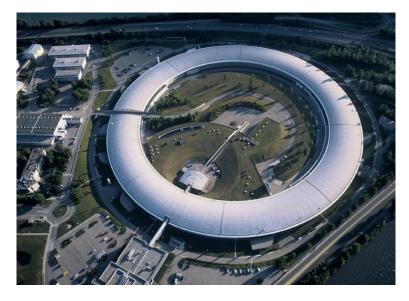
I. Context

- •ESRF-EBS: an upgrade of the ESRF storage ring
- II. Stretched wire measurement method
- Basics
- Advanced measurements
- **•II. Measurements: instrumentation and results**
- •ESRF measurement benches
- •Calibration and uncertainties
- Measurement results
- •Measurement benches for the ESRF-EBS

IV. Summary

I. Context

•ESRF-EBS: an upgrade of the ESRF storage ring


II. Stretched wire measurement method

Basics

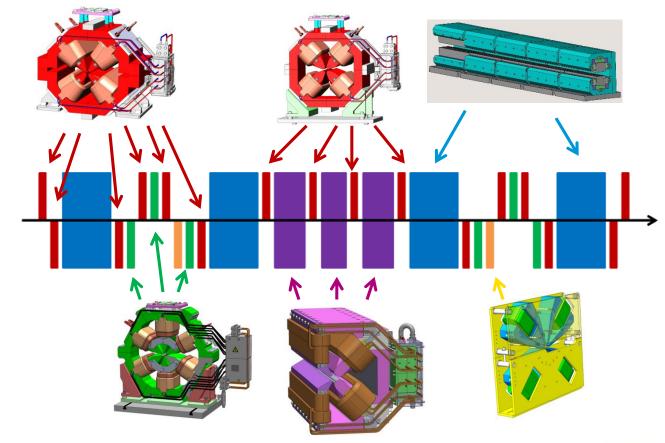
- Advanced measurements
- **•II. Measurements: instrumentation and results**
- •ESRF measurement benches
- •Calibration and uncertainties
- Measurement results
- **IV. Summary**

INTRODUCTION

ESRF – The European Synchrotron

- •Light source built in the 1990's
- •Located in Grenoble, France
- •6 GeV machine
- •200 mA current
- •840 m long storage ring

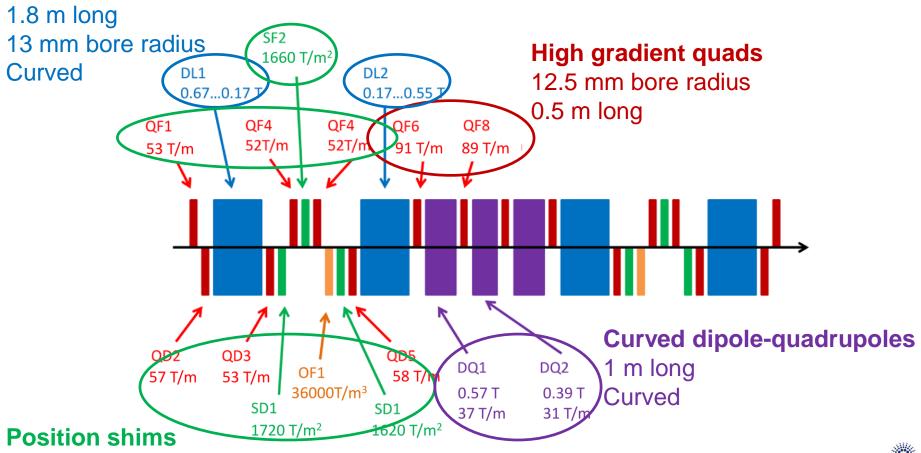
INTRODUCTION



ESRF–EBS project

- Increased brightness
- •Horizontal emittance: 4 nm·rad→ 135 pm·rad
- •New storage ring
- Increased number of bending magnets
- •Strong focusing
- Installation in 2019

ESRF-EBS storage ring magnets: one cell (1/32 of the ring)



INTRODUCTION

Dipoles with long. grad.

I. Context

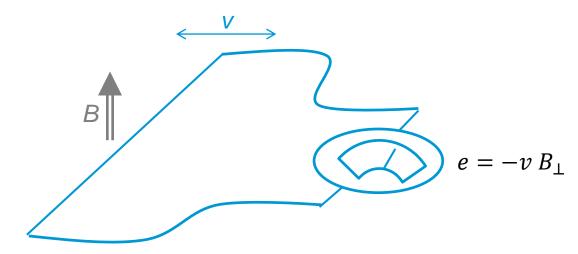
•ESRF-EBS: an upgrade of the ESRF storage ring

II. Stretched wire measurement method

Basics

Advanced measurements

•II. Measurements: instrumentation and results


- •ESRF measurement benches
- •Calibration and uncertainties
- Measurement results

IV. Summary

STRETCHED WIRE MEASUREMENT METHODS

Linear wire motion

- •Moving stretched wire
- •Voltage measurements

- **Applications**
- Alignment
- •Field strength and gradient measurements
- •Homogeneity
- Main challenges
- •High sensitivity to wire motion errors
- Low voltage measurements

Advanced measurements

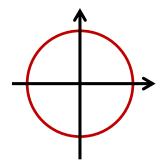
•Based on field multipole analysis

•Can be used for alignment, strength measurements, higher order multipoles

Method

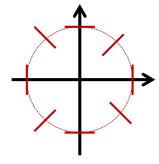
$$B = \sum_{n=1}^{\infty} (b_n + ia_n) \left(\frac{z}{\rho_0}\right)^{n-1}$$
$$\mathbf{B}_{\perp} = (B_{\perp 1}, \dots, B_{\perp M}) \approx \mathbf{M}(a_1, \dots, a_N, b_1, \dots, b_N)^T$$
$$\mathbf{\widehat{C}} = \left(\widehat{a_1}, \dots, \widehat{a_N}, \widehat{b_1}, \dots, \widehat{b_N}\right)^T = \mathbf{M}^+ \mathbf{B}_{\perp}$$

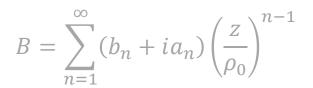
Multipole expansion


N first multipoles Field perp. to wire motion

with $M_{mn} = f(z_m, \theta_m, n)$

where **M**⁺ is a pseudoinverse of **M**


Advanced measurements (cont.)


Single radius Good repeatability Fast

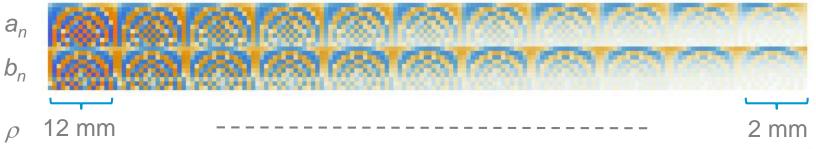
Multi-radii Improved accuracy Relatively fast

Compensated Insensitive to 4-pole Slow

$$\widehat{\mathbf{C}} = \left(\widehat{a_1}, \dots, \widehat{a_N}, \widehat{b_1}, \dots, \widehat{b_N}\right)^T = \mathbf{M}^+ \mathbf{B}_\perp$$

Advanced measurements (cont.)

Example: multi-radii method


 $\widehat{C} = M^+ B_\perp$

M may be difficult to invert. It can be rewritten as

$$\mathbf{M}^{+} = \mathbf{R} \begin{pmatrix} \mathbf{M}_{1}^{+} & \mathbf{0} \\ & \ddots & \\ \mathbf{0} & & \mathbf{M}_{P}^{+} \end{pmatrix}$$

where $\mathbf{M_i}^+$ is for the radius ρ_i and \mathbf{R} depends only on the measurement and normalization radii

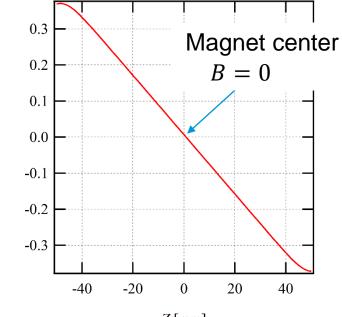
M for 10 multipoles and ρ = 12 ... 2 mm

STRETCHED WIRE MEASUREMENT METHODS

Alignment

Linear measurements

•Zero field at magnet centre


•Large higher order multipoles may lead to alignment errors

•Axis obtained by moving the wire extremities in opposite directions

•Suitable for quadrupole alignment

Multipole measurements

- •Similar to rotating coil methods
- •Better results for 6- and 8-poles

B [T m]

I. Context

•ESRF-EBS: an upgrade of the ESRF storage ring

II. Stretched wire measurement method

Basics

Advanced measurements

- **•II. Measurements: instrumentation and results**
- •ESRF measurement benches
- •Calibration and uncertainties
- Measurement results
- **IV. Summary**

ESRF MEASUREMENT BENCHES

Wire position monitors (optional)

New wire support

3 m long _ granite table

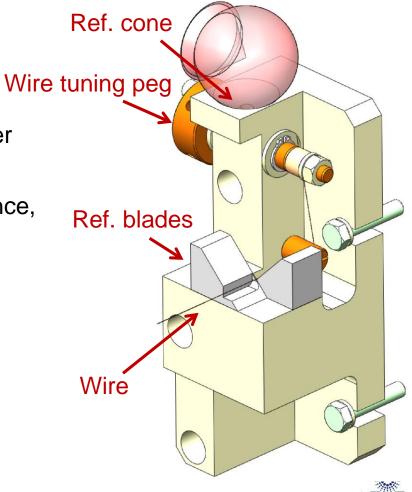
Rails for length adjustment

The European Synchrotron

Linear stages (Newport ILC&IMS-V)

Instrumentation rack

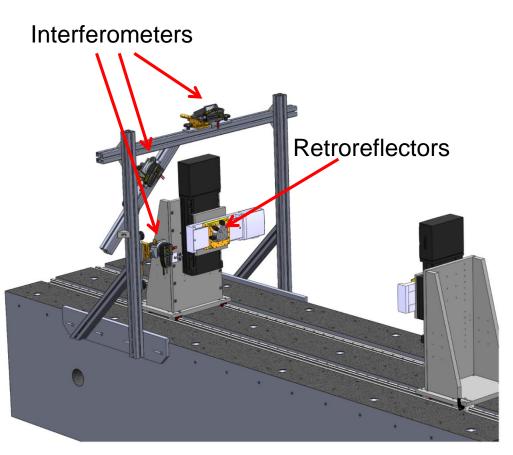
Newport XPS motion controller Keithley 2182A voltmeter NI acquisition board (wire tuning, temperature) Industrial PC



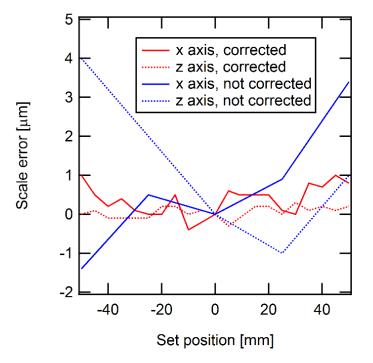
Wire supports

•Two rectified blades (±0.004 mm error measured)

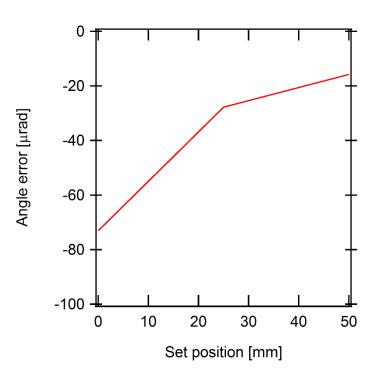
•Wire position can be measured with a laser tracker or a FaroArm


•A reference cone is installed for convenience, but its use is not mandatory

The European Synchrotron


Stage calibration bench

- Fast calibration
- •Based on 3 interferometers
- Measurements of scale errors
- Measurement of stage angles
- •Implementation of correction tables
- •Easy to install and to transport



Stage calibration results

Standard deviation < 0.5 μ m (measured in the one direction to avoid backlash)

Perpendicularity error

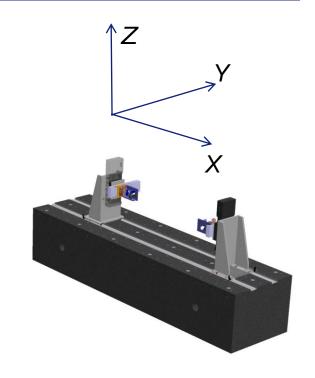
Portable Coordinate Measurement Machine

Laser tracker measurement: $\sigma = 20 \,\mu m$

Magnetic measurements

Error	St Dev [µm]	Type ¹
Mag. Meas. Repeat.	1	А
Wire Pos. Repeat.	5	А
Wire Radius. Acc.	3	В
Total	7	

¹According to the Guide to the expression of Uncertainties in Measurements (GUM), type A uncertainties are obtained from observed distribution while type B are not obtained from repeated observations.


UNCERTAINTIES OF STRETCHED-WIRE ALIGNMENT

Summary of alignment uncertainties

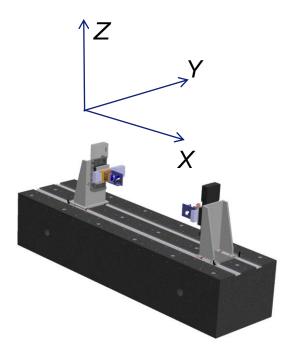
$$\sigma_x = \sigma_y \sqrt{2 + \frac{1}{2} \left(\frac{H}{L}\right)^2} = 29 \ \mu m$$

$$\sigma_{Y} = \sqrt{\left(\frac{3}{2} + 2\left(\frac{x_{0}}{L}\right)^{2} + \frac{1}{2}\left(\frac{H}{W}\right)^{2}\right)\sigma^{2} + \sigma_{MM}^{2}} = 28 \ \mu \text{m}$$

$$\sigma_{z} = \sqrt{\left(\frac{3}{2} + 2\left(\frac{x_{0}}{L}\right)^{2}\right)\sigma^{2} + \sigma_{MM}^{2}} = 26 \ \mu m,$$

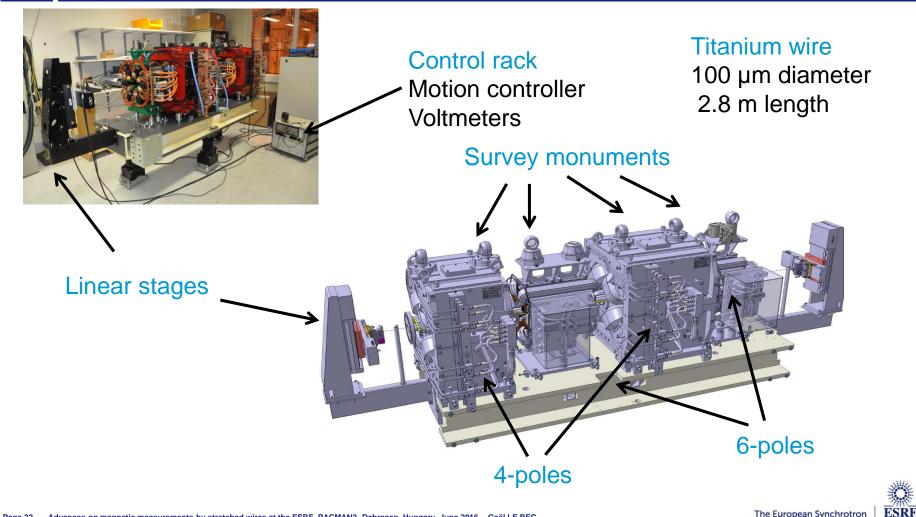
with σ = 20 mm (laser tracker uncertainty), *H* = 0.6 m (magnet length), *L* = 1.2 m (wire length), *x*₀ = 0.2 m (long. position of fiducial), σ_{MM} = 7 mm (magnetic measurement uncertainty)

Magnetic measurement repeatability (before transfer to fiducials)


- $\sigma_{Y,Z} < 1 \,\mu m$ without removing the wire $\sigma_{Y,Z} < 5 \,\mu m$ wire removed, reinstalled and tuned $\sigma_{\theta Y, \theta Z} < 100 \,\mu rad$
- $\sigma_{_{ heta\!X}}$ <10 µrad

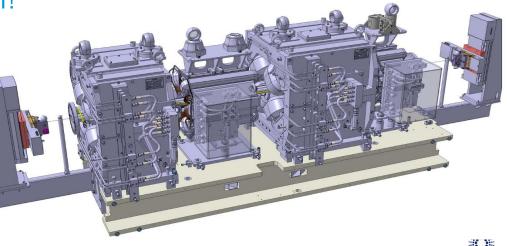
(measured on a 22 T/m, 66 mm aperture, 530 mm long quadrupole, see [Le Bec, IMMW2009] for details)

Suitable for multipole analysis

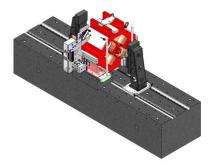

Measurement duration

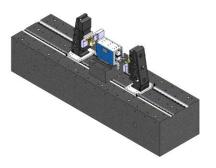
Alignment: $T \approx 5$ min (without transfer to fiducials) Multipoles: $T \approx 2$ min

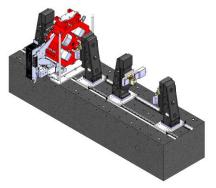
MEASUREMENT RESULTS – MAGNET GIRDER

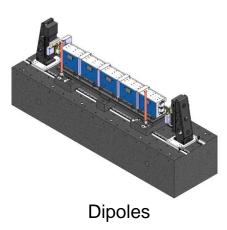


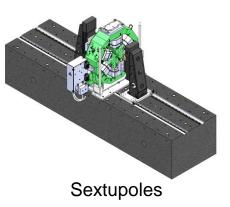
Alignment of 4 magnets on a girder

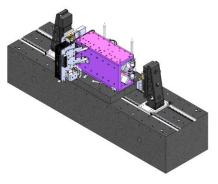

- •Magnets aligned on the wire within 20 µm
- •Alignment errors dominated by magnet adjustment precision
- Stage supports not rigid enough
- •Magnet cycling needed (remanent field cause offsets)
- Not suitable if dipoles on the girder!
- \rightarrow Not used for the ESRF-EBS




MEASUREMENT BENCHES FOR THE ESRF-EBS


High gradient quads




Dipole modules

High gradient quads, 2 stands

Dipole-quadrupoles

MEASUREMENT BENCHES FOR THE ESRF-EBS

Stretched wire measurement benches at the ESRF

I. Context

- •ESRF-EBS: an upgrade of the ESRF storage ring
- II. Stretched wire measurement method

Basics

- Advanced measurements
- **•II. Measurements: instrumentation and results**
- •ESRF measurement benches
- •Calibration and uncertainties
- Measurement results
- •Measurement benches for the ESRF-EBS

IV. Summary

ESRF-EBS magnetic measurements

- •Approximately 1000 magnet to be measured
- •PM dipole to be measured at the ESRF
- •Other magnets to be measured by magnet suppliers, with ESRF benches
- •Stretched wire alignment of magnet girders not foreseen (dipoles on all girders)

Results

- •Repeatability of magnetic centre measurement < 5 μ m (incl. wire installation)
- •Fiducialization uncertainties \approx 25 to 30 μ m, dominated by laser tracker errors
- •Suitable for multipole analysis (quality control & beam dynamics)
- •Fast measurements

MANY THANKS FOR YOUR ATTENTION

Cited in the slides

[Le Bec, IMMW2009] G. Le Bec, J. Chavanne, Ch. Penel, *Stretched wire measurement bench at the ESRF*, IMMW16, 2009, Bad-Zurzach, Switzerland.

[Le Bec, IMMW2013] G. Le Bec, J. Chavanne, Ch. Penel, *Stretched wire measurement of multipole magnets at the ESRF,* IMMW17, 2013, Brookhaven, USA.

Other references

G. Le Bec, J. Chavanne, Ch. Penel, Stretched wire measurement of multipole magnets, PRST-AB 022401, 2012

A. K. Jain, CERN Report No. 98-05, Anacapri, Italy, 1997, pp. 176–218.

L. Walckier, CERN Report No. 92-05, Montreux, Switzerland, 1992, pp. 138–166.

J. DiMarco *et al.*, *Field alignment of quadrupole magnets for the LHC interaction regions*, IEEE Trans. Appl. Supercond. 10, 127 (2000).

J. DiMarco and J. Krzywinski, Fermilab Report No. MTF-96-0001, 1996.

