

PACMAN Workshop, June 2016

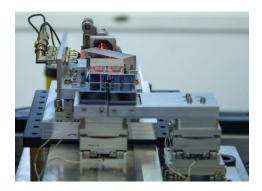
Error sources in dimensional metrology

Ben Hughes , NPL, UK

Outline

- Dimensional metrology
- The Metrology Loop
- Error sources and mitigation

Dimensional Metrology


- ID, 2D and 3D
- Contact or Non-contact
- Range based, angle based or a combination of both
- Scales from pm to …

The Metrology Loop

- A metrology loop is the closed path containing all elements between the sensor and the part that affect the measurement.
- Often the metrology loop has elements in common with the structural or force loop.
- Changes in the metrology loop due to, for example, temperature change, vibration or structural forces, are indistinguishable from changes in the dimension being measured.

- Thermal
- Refraction & Refractive index gradient
- Mechanical errors
- Geometric errors

- Thermal effects
 - One of the biggest potential sources of error in dimensional metrology!
 - ISO 1: "The standard reference temperature for geometrical product specification is fixed at 20 °C"
 - Dimensions measured at T \neq 20 °C must be corrected

 $L_{20} = L_{T}[1 - \alpha(T-20)]$

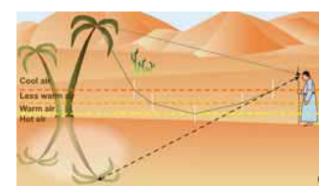
 α is coefficient of thermal expansion

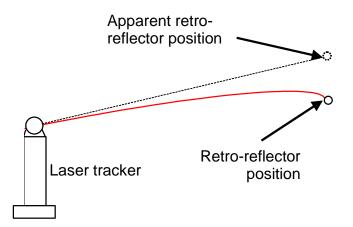
e.g. $\alpha_{steel} = 12 \times 10^{-6} \text{ K}^{-1}$, $\alpha_{aluminium} = 23 \times 10^{-6} \text{ K}^{-1}$

- Thermal expansion affects the instrument too
 - Distorts the metrology loop

- Thermal effects continued
 - Mitigation
 - Use low CTE materials for critical parts of the metrology loop *e.g. Invar* or *Zerodur*
 - Minimise uncertainty in thermal expansion correction by controlling temperature close to 20 °C
 - Active environmental control
 - Local insulation
 - Avoid handling parts
 - Allow time for thermal stabilisation

Refractive index


- Affects optical length measurements e.g. interferometers
- Refractive index, *n*, determines speed of light in a medium, *c'*. So distances measured in terms of the speed of light must be corrected.


 $c' = c_0 / n$ $c_0 =$ speed of light in vacuum

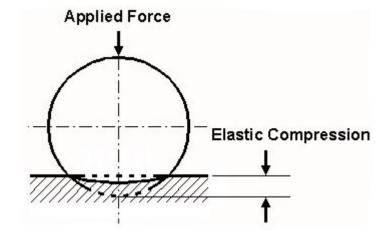
- *n* at standard temperature and pressure ~ 1.00027
- dn/dT ~ -1×10⁻⁶ K⁻¹
- dn/dP ~ 2.7×10⁻⁷ hPa⁻¹
- Can calculate *n* from air temperature and pressure readings using *e.g.* Edlen's formula

- Refractive index gradient
 - Gradient normal to direction of propagation of a beam bends the beam
 - This is how a mirage is formed!
 - Affects optical *angle* measurements *e.g.* laser tracker

- Mechanical Stiffness of metrology loop
 - Instrument *e.g.* CMM structure
 - Instrument support e.g. laser tracker tripod
 - Part support/clamping
 - Isolate force loop from metrology loop



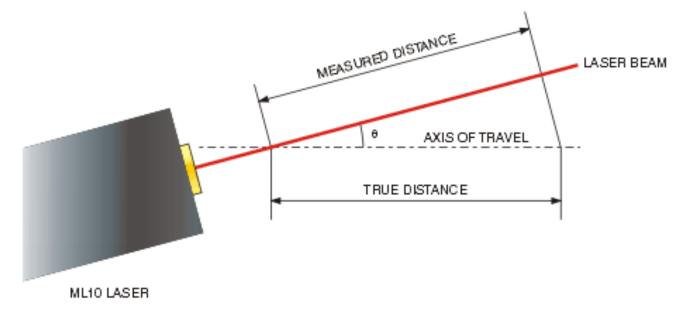
- Mechanical Vibration induced the metrology loop
 - Eliminate/isolate source
 - Isolate metrology loop
 - Stiffen structure high resonant frequency
 - Also air movement in optical metrology systems



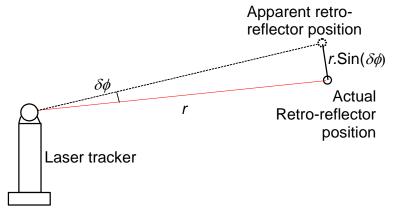
- Mechanical elastic compression
 - Occurs whenever mechanical probing takes place
 - Depends on contact force
 - Geometry of component (*e.g.* flat, sphere, cylinder)
 - Component and probe materials
 - Type of contact (*e.g.* point, line)

Compression corrections for tungsten carbide spheres between flat steel anvils for various forces NPL GPG 80

http://emtoolbox.nist.gov/Main/Main.asp



- Alignment Abbe error
 - Measurement scale is not in line with the object being measured – Abbe offset, x.
 - Straightness of axis or sloppy fit of calliper causes angle between jaws, θ .
 - Eliminate by aligning scale coaxially with part, or compensate my measuring x and θ .



- Alignment Cosine error
 - Angular misalignment, θ, between scale, or axis, and part.
 - Length error, $\Delta L = L(1 \cos\theta)$.
 - Minimise by minimising θ .

- Alignment Sine error
 - Occurs in angle-based coordinate metrology due to angle measurement error, $\delta\phi$.
 - Error proportional to range, *r*.
 - Reduce coordinate error by reducing $\delta \phi$ and/or *r*.
 - Eliminate by measuring coordinates in terms of range only.

- There are many sources of error in dimensional metrology
- Careful control of the metrology loop can help minimise or eliminate many sources of error

THANK YOU

Ben Hughes Principal Research Scientist ben.hughes@npl.co.uk 020 8943 6124

