Effects of Element Misalignments on Accelerator Performance

Andrea Latina (CERN)

andrea.latina@cern.ch

2nd PACMAN Workshop - Debrecen, Hungary - June 13-15, 2016

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Table of Contents

- Recap of beam dynamics
- Why is the emittance important?
- Effects of static misalignments
- Mitigation techniques
- Integrated performance
- Conclusions

Recap of beam dynamics (I) : Forces and kicks

Phase-space coordinates of a single particle:

$$\begin{pmatrix} x, & x', & y, & y', & \Delta t, & \delta = \frac{P - P_0}{P_0} \\ [m] & [rad] & [m] & [rad] & [m/c] & [\#] \end{pmatrix}^T$$

with the transverse angles defined as:

$$x' = \frac{P_x \text{ [MeV/c]}}{P_z \text{ [MeV/c]}}; \quad y' = \frac{P_y \text{ [MeV/c]}}{P_z \text{ [MeV/c]}}$$

Recall the Lorentz force, $F = q (E + v \times B)$. A transverse force over a length Δs imparts a transverse momentum $\Delta P_{\perp} = F_{\perp} \Delta t$:

$$\Delta P_{\perp} \; [\text{MeV/c}] = F_{\perp} \; [\text{MeV/m}] \; \frac{1}{V_z \; [\text{c}]} \; \Delta s \; [\text{m}]$$

which translates into a transverse kick, e.g. $\Delta x'$ along the x axis:

$$x'_{(s+\Delta s)} = \frac{P_x + \Delta P_x}{P_z} = x'_{(s)} + \Delta x' \quad \text{with} \quad \Delta x' \text{ [rad]} = \frac{\Delta P_x \text{ [MeV/c]}}{P_z \text{ [MeV/c]}}$$

Recap of beam dynamics (II) : Twiss parameters

The particle motion in a periodic lattice is described via the solution of the Hill's equation:

$$x(s) = \sqrt{\varepsilon}\sqrt{\beta(s)}\cos(\mu(s) + \mu_0)$$

β (s), beta function, and μ (s), phase advance (see Twiss parameters), are <u>lattice properties</u>:

$$\mu\left(s\right) = \int_{\mathbf{0}}^{s} \frac{ds'}{\beta\left(s'\right)}$$

 μ₀, the initial phase, and ε, the Courant-Snyder invariant (or "action"), are a particle properties

Particle transport:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

$$\vec{X}_{j} = \underbrace{\begin{pmatrix} \sqrt{\frac{\beta_{j}}{\beta_{i}}} \left(\cos \mu + \alpha_{i} \sin \mu\right) & \sqrt{\beta_{j}\beta_{i}} \sin \mu \\ (\alpha_{i} - \alpha_{j}) \cos \mu - (1 + \alpha_{i}\alpha_{j}) \sin \mu \\ \sqrt{\beta_{j}\beta_{i}} & \sqrt{\frac{\beta_{i}}{\beta_{j}}} \left(\cos \mu - \alpha_{j} \sin \mu\right) \end{pmatrix}}_{M_{i \to j} (\text{actually a } 6 \times 6 \text{ matrix})} \cdot \begin{bmatrix} \vec{X}_{i} + \begin{pmatrix} 0 \\ \Delta x' \\ 0 \\ \Delta y' \\ 0 \\ 0 \end{pmatrix}_{i}.$$

IMPORTANT: the β -function amplifies unwanted transverse kicks.

4/19 A.Latina - 2nd PACMAN Workshop

Recap of beam dynamics (III) : Beam emittance

The Twiss parameters define the beam ellipse:

$$\varepsilon = \gamma \, x^2 + 2\alpha \, x \, x' + \beta \, x'^2$$

- The ellipse amplitude, ε, , is a <u>particle property</u> (called Courant-Snyder invariant or "action")
- For an ensemble of particles we define the (geometric) <u>beam</u> <u>emittance</u>, ε, a quantity proportional to the area of the ellipse

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

The geometric emittance, ϵ , is defined as:

$$\epsilon_{\text{geom}} = \sqrt{\det\left(\text{cov}\big(\mathbf{x},\,\mathbf{x}'\big)\right)} = \sqrt{\left< x^2 \right> \left< x'^2 \right> - \left< x\,x'\right>^2}$$

From which we can compute beam size and divergence:

$$\sigma_x = \sqrt{\beta \epsilon_{\text{geom}}}$$
$$\sigma_{x'} = \sqrt{\frac{\epsilon_{\text{geom}}}{\beta}}$$

(recall the *normalised* emittance, $\epsilon_{norm} = \beta_{rel} \gamma_{rel} \epsilon_{geom}$) 5/19 A.Latina - 2nd PACMAN Workshop

Effects of kicks on the emittance

Nominal emittance:

$$\epsilon_0 = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle x \, x' \rangle^2} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle} \qquad \text{(if x and } x' \text{ are uncorellated)}$$

In presence of transverse kicks, $\Delta x'$, the emittance transforms $\epsilon_0 \rightarrow \epsilon$:

$$\begin{split} \epsilon &= \sqrt{\langle x^2 \rangle \left\langle (x' + \Delta x')^2 \right\rangle} \approx \sqrt{\frac{\langle x^2 \rangle \langle x'^2 \rangle}{\epsilon_0^2} + \langle x^2 \rangle \langle \Delta x' \rangle^2} \\ &= \epsilon_0 \sqrt{1 + \frac{\langle x^2 \rangle \langle \Delta x' \rangle^2}{\langle x'^2 \rangle}} \\ &\approx \epsilon_0 \left(1 + \frac{1}{2} \frac{\langle \Delta x' \rangle^2}{\langle x'^2 \rangle} \right) \end{split}$$

From which derives the emittance growth:

$$\frac{\Delta\epsilon}{\epsilon_0} = \frac{\epsilon - \epsilon_0}{\epsilon_0} = \frac{1}{2} \frac{\sigma_{\Delta x'}^2}{\sigma_{x'}^2} \quad \Rightarrow \quad \boxed{\Delta\epsilon \propto \sigma_{\Delta x'}^2}$$

For example a quadrupole:

$$\Delta x' = \mathcal{K}_1 \mathcal{L}_q \, \Delta x_{\text{misalign}} \equiv \frac{\Delta x_{\text{misalign}}}{f_{\text{length}}} \quad \Rightarrow \quad \boxed{\Delta \epsilon \propto \sigma_{\text{misalign}}^2}$$

6/19 A.Latina - 2nd PACMAN Workshop

Why is the emittance important?

In a particle collider the number of collision is given by the luminosity:

• H_D , disruption parameter (enhances the luminosity); N, number of particles per bunch ; a_b , number of bunches per train ; f_r , repetition frequency ; $\sigma_{x,y}^*$ transverse beam sizes at the interaction point (IP)

CLIC emittance growth budgets, in the main linac, due to static misalignments: $\Delta \epsilon_x = 60 \text{ nm}$ and $\Delta \epsilon_y = 10 \text{ nm}$ in the horizontal and vertical axes, respectively.

Effect of magnet misalignments

- Feed-down" effect: A misaligned magnet of order N behaves like a magnet of order N -1:
 - a misaligned quadrupole gives a dipolar kick,
 - a misaligned sextupole gives a quadrupolar kick, etc. etc.
- Effect of a misaligned quadrupole (the most frequently used type of magnet!)

deflects the beam trajectory, excites betatron oscillations, introduces unwanted dispersion

Unwanted dispersion is bad!

Because it adds a position-momentum correlation, and increases the beam size:

$$x(s) \to x(s) + D(s) \frac{\Delta P}{P_0}$$

$$\sigma_x^2 \to \sigma_x^2 + D^2 \sigma_{\frac{\Delta P}{P_0}}^{2}$$
(energy spread)²
(energy spread)²

8/19 A.Latina - 2nd PACMAN Workshop

Effect of accelerator structure misalignments

Particles traversing a structure with an offset excite Wakefields:

transverse effect: <u>z-dependent deflection</u>

$$\Delta x' = \frac{W_{\perp}\left(z\right) N e^2 L_{\rm S}}{P_0} \Delta x$$

- $W_{\perp}(z)$, transverse wakefield function, [V/pC/m/mm]
- N, number of particles per bunch
- Ls, structure length
- z, particle distance from bunch head
- Δx , transverse offset beam \leftrightarrow structure

Iongitudinal effect: z-dependendent energy loss

$$\Delta P_z = W_{\parallel} (z) N e^2 L_{\rm S}$$

- ▶ W_{||} (z), longitudinal wakefield function, [V/pC/m]
- independent from misalignment
- Their effect can be felt by particles at
 - ▶ short-range (same bunch) \rightarrow emittance growth
 - long-range (bunch to bunch) \rightarrow beam breakup

Effect of BPM misalignments

Misaligned BPMs affect the beam, indirectly:

they do not deflect the beam, but can compromise the effectiveness of optimisation techniques

 (and actually they can also deflect the beam, e.g. high-resolution "cavity BPMs", which can create Wakefields)

Besides, off-centred BPMs can display:

▶ loss of resolution, or scaling errors: $x_{read} = \alpha_{scaling} x_{real}$

 \Rightarrow BBA, Beam-Based Alignment, can cure this problem (e.g. DFS, Dispersion-Free Steering).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Other errors that affect all elements are:

- angle errors: offsets in $\Delta x'$ and $\Delta y'$
- \blacktriangleright roll errors: rotations around the beam axis $\Delta\phi$

Beam-based alignment techniques

- 1. Simplest:
 - Quad-shunting: each quadrupole is moved until the magnetic centre is determined
 - <u>One-to-one</u>: transverse kickers are used to steer the beam through the centre of the $\overline{\mathsf{BPMs}}$
- 2. Dispersion-Free Steering (DFS) / Wakefield-Free Steering (WFS)
 - DFS: the presence of dispersion is detected and measured, and transverse kickers are used to counteract it
 - WFS: the presence of wakefields is detected and measured, and transverse kickers are used to counteract it
- 3. **<u>RF Alignment</u>** (specific to CLIC)
 - Relative beam offset in the accelerating structures is measured, and structures are moved to reduce it
 - Others:
 - Emittance tunng bumps, coupling correction
 - MICADO: similar to one-to-one, but picks the best correctors
 - Kick-Minimisation: useful when DFS cannot easily be applied (e.g. ILC turnaround loops, ...)

Example of emittance growth in the CLIC main linac

Misalignment of all components, $\sigma_{\rm RMS} = 10~\mu{\rm m}$

- Initial emittance is 10 nm
- Emittance growth is enormous...

One simple mitigation technique is used: "One-toone" steering, but it's far from being sufficient...

Sac

Beam-based Alignment: Dispersion-Free Steering (DFS) Principle of DFS:

- 1. Measure the dispersion by altering the beam energy (or scaling the magnets)
- 2. Compute the correction which minimise the dispersion

Graphically:

That is, minimise:

$$\chi^{2} = \sum_{\text{bpms}} y_{i}^{2} + \omega^{2} \sum_{\text{bpms}} \left(y_{\Delta E,i} - y_{i} \right)^{2} + \beta^{2} \sum_{\text{corrs}} \theta_{r}^{2}$$

In practice, one needs to solve the system of equations:

Example of DFS in the CLIC main linac

Example of RF Alignment in the CLIC main linac

RF Alignment:

- Each structure is equipped with a wakefield monitor
- Up to eight structures on one movable girders

Before correction:

After correction:

(PLACET Simulation, courtesy of D.Schulte)

DFS Tests at FACET / SLAC

(A.Latina, E.Adli, J.Pfingstner, D.Schulte)

16/19 A.Latina - 2nd PACMAN Workshop

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨ - のん

Tolerance to long wavelengths

(courtesy of D.Schulte)

Tolerance Table

Element	error	with respect to	alignment	
			ILC	CLIC
Structure	offset	girder	$300\mu{ m m}$	$10\mu{ m m}$
Structure	tilts	girder	$300\mu \mathrm{radian}$	$200(*)\mu\mathrm{m}$
Girder	offset	survey line	$200\mu{ m m}$	$9.4\mu{ m m}$
Girder	tilt	survey line	20μ radian	$9.4\mu \mathrm{radian}$
Quadrupole	offset	girder/survey line	$300\mu{ m m}$	$17\mu{ m m}$
Quadrupole	roll	survey line	$300\mu \mathrm{radian}$	$\leq 100 \mu \mathrm{radian}$
BPM	offset	girder/survey line	$300\mu{ m m}$	$14\mu{ m m}$
BPM	resolution	BPM center	$\approx 1\mu{ m m}$	$0.1\mu{ m m}$
Wakefield mon.	offset	wake center		$5\mu{ m m}$

(courtesy of D.Schulte)

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Conclusions

- Element misalignments can greatly damage the beam, inducing emittance growth and beam breakup
 - CLIC budgets are very tight: $\Delta \epsilon_x = 60$ nm and $\Delta \epsilon_y = 10$ nm in the main linac
- Standard Pre-Alignment techniques are not sufficient to meet the CLIC requirements:
 - \blacktriangleright tightest tolerance is 14 μ m over a window of 200 m
- Powerful beam-based techniques have been invented and tested experimentally
- **PACMAN** + Beam line design + Beam-based Alignment:

wonderful technical achievements!

ション ふゆ アメリア メリア しょうくの