Effects of Element Misalignments on
 Accelerator Performance

Andrea Latina (CERN)
andrea.latina@cern.ch

$2^{\text {nd }}$ PACMAN Workshop - Debrecen, Hungary - June 13-15, 2016

Table of Contents

- Recap of beam dynamics
- Why is the emittance important?
- Effects of static misalignments
- Mitigation techniques
- Integrated performance
- Conclusions

Recap of beam dynamics (I): Forces and kicks

Phase-space coordinates of a single particle:

$$
\left(\begin{array}{cccccc}
x, & x^{\prime}, & y, & y^{\prime}, & \Delta t, & \delta=\frac{P-P_{0}}{P_{0}} \\
{[\mathrm{~m}]} & {[\mathrm{rad}]} & {[\mathrm{m}]} & {[\mathrm{rad}]} & {[\mathrm{m} / \mathrm{c}]} & {[\#]}
\end{array}\right)^{T}
$$

with the transverse angles defined as:

$$
x^{\prime}=\frac{P_{x}[\mathrm{MeV} / \mathrm{c}]}{P_{z}[\mathrm{MeV} / \mathrm{c}]} ; \quad y^{\prime}=\frac{P_{y}[\mathrm{MeV} / \mathrm{c}]}{P_{z}[\mathrm{MeV} / \mathrm{c}]}
$$

Recall the Lorentz force, $F=q(E+v \times B)$. A transverse force over a length Δs imparts a transverse momentum $\Delta P_{\perp}=F_{\perp} \Delta t$:

$$
\Delta P_{\perp}[\mathrm{MeV} / \mathrm{c}]=F_{\perp}[\mathrm{MeV} / \mathrm{m}] \frac{1}{V_{z}[\mathrm{c}]} \Delta s[\mathrm{~m}]
$$

which translates into a transverse kick, e.g. Δx^{\prime} along the x axis:

$$
x_{(s+\Delta s)}^{\prime}=\frac{P_{x}+\Delta P_{x}}{P_{z}}=x_{(s)}^{\prime}+\Delta x^{\prime} \quad \text { with } \quad \Delta x^{\prime}[\mathrm{rad}]=\frac{\Delta P_{x}[\mathrm{MeV} / \mathrm{c}]}{P_{z}[\mathrm{MeV} / \mathrm{c}]}
$$

Recap of beam dynamics (II): Twiss parameters

The particle motion in a periodic lattice is described via the solution of the Hill's equation:

$$
x(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cos \left(\mu(s)+\mu_{0}\right)
$$

$-\beta(s)$, beta function, and $\mu(s)$, phase advance (see Twiss parameters), are lattice properties:

$$
\mu(s)=\int_{0}^{s} \frac{d s^{\prime}}{\beta\left(s^{\prime}\right)}
$$

- μ_{0}, the initial phase, and ε, the Courant-Snyder invariant (or "action"), are a particle properties

Particle transport:

$$
\vec{X}_{j}=\underbrace{\left(\begin{array}{cc}
\sqrt{\frac{\beta_{j}}{\beta_{i}}}\left(\cos \mu+\alpha_{i} \sin \mu\right) & \sqrt{\boldsymbol{\beta}_{j} \boldsymbol{\beta}_{i}} \sin \mu \\
\frac{\left(\alpha_{i}-\alpha_{j}\right) \cos \mu-\left(1+\alpha_{i} \alpha_{j}\right) \sin \mu}{\sqrt{\beta_{j} \beta_{i}}} & \sqrt{\frac{\beta_{i}}{\beta_{j}}}\left(\cos \mu-\alpha_{j} \sin \mu\right)
\end{array}\right)}_{M_{i \rightarrow j} \text { (actually a } 6 \times 6 \text { matrix) }} \cdot\left[\vec{X}_{i}+\left(\begin{array}{c}
0 \\
\Delta x^{\prime} \\
0 \\
\Delta y^{\prime} \\
0 \\
0
\end{array}\right)\right]
$$

IMPORTANT: the β-function amplifies unwanted transverse kicks.

Recap of beam dynamics (III) : Beam emittance

The Twiss parameters define the beam ellipse:

$$
\varepsilon=\gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2}
$$

- The ellipse amplitude, ε, , is a particle property (called Courant-Snyder invariant or "action")
- For an ensemble of particles we define the (geometric) beam emittance, ϵ, a quantity proportional to the area of the ellipse

The geometric emittance, ϵ, is defined as:

$$
\epsilon_{\text {geom }}=\sqrt{\operatorname{det}\left(\operatorname{cov}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right)}=\sqrt{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}}
$$

From which we can compute beam size and divergence:

$$
\begin{aligned}
\sigma_{x} & =\sqrt{\beta \epsilon_{\text {geom }}} \\
\sigma_{x^{\prime}} & =\sqrt{\frac{\epsilon_{\text {geom }}}{\beta}}
\end{aligned}
$$

(recall the normalised emittance, $\epsilon_{\text {norm }}=\beta_{\text {rel }} \gamma_{\text {rel }} \epsilon_{\text {geom }}$)

Effects of kicks on the emittance

Nominal emittance:

$$
\epsilon_{0}=\sqrt{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}}=\sqrt{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle} \quad \text { (if } \mathrm{x} \text { and } x^{\prime} \text { are uncorellated) }
$$

In presence of transverse kicks, Δx^{\prime}, the emittance transforms $\epsilon_{0} \rightarrow \epsilon$:

$$
\begin{aligned}
\epsilon=\sqrt{\left\langle x^{2}\right\rangle\left\langle\left(x^{\prime}+\Delta x^{\prime}\right)^{2}\right\rangle} & \approx \sqrt{\underbrace{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle}_{\epsilon_{0}^{2}}+\left\langle x^{2}\right\rangle\left\langle\Delta x^{\prime}\right\rangle^{2}} \\
& =\epsilon_{0} \sqrt{1+\frac{\left\langle x^{2}\right\rangle\left\langle\Delta x^{\prime}\right\rangle^{2}}{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle}} \\
& \approx \epsilon_{0}\left(1+\frac{1}{2} \frac{\left\langle\Delta x^{\prime}\right\rangle^{2}}{\left\langle x^{\prime 2}\right\rangle}\right)
\end{aligned}
$$

From which derives the emittance growth:

$$
\frac{\Delta \epsilon}{\epsilon_{0}}=\frac{\epsilon-\epsilon_{0}}{\epsilon_{0}}=\frac{1}{2} \frac{\sigma_{\Delta x^{\prime}}^{2}}{\sigma_{x^{\prime}}^{2}} \Rightarrow \Delta \epsilon \propto \sigma_{\Delta x^{\prime}}^{2}
$$

For example a quadrupole:

$$
\Delta x^{\prime}=K_{1} L_{\mathrm{q}} \Delta x_{\text {misalign }} \equiv \frac{\Delta x_{\text {misalign }}}{f_{\text {length }}} \Rightarrow \Delta \epsilon \propto \sigma_{\text {misalign }}^{2}
$$

Why is the emittance important?

- In a particle collider the number of collision is given by the luminosity:

$$
L=H_{D} \frac{N^{2} n_{b} f_{r}}{4 \pi \sigma_{x}^{\star} \sigma_{y}^{\star}}
$$

with

$$
\begin{aligned}
\sigma_{\perp}^{\star} & =\sqrt{\beta_{\perp}^{\star} \epsilon_{\perp \text { geom }}} \\
\perp & =x \text { or } y
\end{aligned}
$$

- H_{D}, disruption parameter (enhances the luminosity) ; N, number of particles per bunch ; n_{b}, number of bunches per train ; f_{r}, repetition frequency ; $\sigma_{x, y}^{\star}$ transverse beam sizes at the interaction point (IP)
- CLIC emittance growth budgets, in the main linac, due to static misalignments: $\Delta \epsilon_{x}=60 \mathrm{~nm}$ and $\Delta \epsilon_{y}=10 \mathrm{~nm}$ in the horizontal and vertical axes, respectively.

Effect of magnet misalignments

- "Feed-down" effect: A misaligned magnet of order \mathbf{N} behaves like a magnet of order $\mathbf{N} \mathbf{- 1}$:
- a misaligned quadrupole gives a dipolar kick,
- a misaligned sextupole gives a quadrupolar kick, etc. etc.
- Effect of a misaligned quadrupole (the most frequently used type of magnet!)

$$
E_{1}<E_{2}<E_{3}
$$

- deflects the beam trajectory, excites betatron oscillations, introduces unwanted dispersion
- Unwanted dispersion is bad!

Because it adds a position-momentum correlation, and increases the beam size:

$$
\begin{aligned}
& x(s) \rightarrow x(s)+D(s) \frac{\Delta P}{P_{0}} \\
& \sigma_{x}^{2} \rightarrow \sigma_{x}^{2}+D^{2} \underbrace{\sigma_{\frac{\Delta P}{P_{0}}}^{2}}
\end{aligned}
$$

Effect of accelerator structure misalignments

Particles traversing a structure with an offset excite Wakefields:

- transverse effect: z-dependent deflection

$$
\Delta x^{\prime}=\frac{W_{\perp}(z) N e^{2} L_{s}}{P_{0}} \Delta x
$$

- $W_{\perp}(z)$, transverse wakefield function, $[\mathrm{V} / \mathrm{pC} / \mathrm{m} / \mathrm{mm}]$
- N, number of particles per bunch
- Ls, structure length
- z, particle distance from bunch head
- Δx, transverse offset beam \longleftrightarrow structure
- longitudinal effect: z-dependendent energy loss

$$
\Delta P_{z}=W_{\|}(z) N e^{2} L_{S}
$$

- $W_{\|}(z)$, longitudinal wakefield function, $[\mathrm{V} / \mathrm{pC} / \mathrm{m}]$
- independent from misalignment
- Their effect can be felt by particles at
- short-range (same bunch) \rightarrow emittance growth
short-range (same bunch) \rightarrow emittance growth
- long-range (bunch to bunch) \rightarrow beam breakup

Effect of BPM misalignments

Misaligned BPMs affect the beam, indirectly:

- they do not deflect the beam, but can compromise the effectiveness of optimisation techniques

- (and actually they can also deflect the beam, e.g. high-resolution "cavity BPMs", which can create Wakefields)

Besides, off-centred BPMs can display:

- loss of resolution, or scaling errors: $x_{\text {read }}=\alpha_{\text {scaling }} x_{\text {real }}$

\Rightarrow BBA, Beam-Based Alignment, can cure this problem (e.g. DFS, Dispersion-Free Steering).

Other errors that affect all elements are:

- angle errors: offsets in Δx^{\prime} and Δy^{\prime}
- roll errors: rotations around the beam axis $\Delta \phi$

Beam-based alignment techniques

1. Simplest:

- Quad-shunting: each quadrupole is moved until the magnetic centre is determined
- One-to-one: transverse kickers are used to steer the beam through the centre of the BPMs

2. Dispersion-Free Steering (DFS) / Wakefield-Free Steering (WFS)

- DFS: the presence of dispersion is detected and measured, and transverse kickers are used to counteract it
- WFS: the presence of wakefields is detected and measured, and transverse kickers are used to counteract it

3. RF Alignment (specific to CLIC)

- Relative beam offset in the accelerating structures is measured, and structures are moved to reduce it
- Others:
- Emittance tunng bumps, coupling correction
- MICADO: similar to one-to-one, but picks the best correctors
- Kick-Minimisation: useful when DFS cannot easily be applied (e.g. ILC turnaround loops, ...)

Example of emittance growth in the CLIC main linac

Misalignment of all components, $\sigma_{\text {RMS }}=10 \mu \mathrm{~m}$

- Initial emittance is 10 nm
- Emittance growth is enormous...

One simple mitigation technique is used: "One-toone" steering, but it's far from being sufficient...

"One-to-one" steering:

- Each corrector is used to steer the beam through the centre of the following BPM

(PLACET Simulation, courtesy of D.Schulte)
- Orbit makes its way through the accelerator, but dispersion is still present...

Beam-based Alignment: Dispersion-Free Steering (DFS)

Principle of DFS:

1. Measure the dispersion by altering the beam energy (or scaling the magnets)
2. Compute the correction which minimise the dispersion

Graphically:

That is, minimise:

$$
\chi^{2}=\sum_{\mathrm{bpms}} y_{i}^{2}+\omega^{2} \sum_{\mathrm{bpms}}\left(y_{\Delta E, i}-y_{i}\right)^{2}+\beta^{2} \sum_{\text {corrs }} \theta_{m}^{2}
$$

In practice, one needs to solve the system of equations:

$$
\underbrace{\left(\begin{array}{c}
b-b_{0} \\
\omega\left(\eta-\eta_{0}\right) \\
0
\end{array}\right)}_{\text {measured observables }}=\underbrace{\left(\begin{array}{c}
\mathbf{R} \\
\omega \mathbf{D} \\
\beta \mathbf{I}
\end{array}\right)}_{\text {response matrices }} \underbrace{\left(\begin{array}{c}
\theta_{\mathbf{1}} \\
\vdots \\
\theta_{m}
\end{array}\right)}_{\text {unknowns }}
$$

Example of DFS in the CLIC main linac

Minimise:

$$
\chi^{2}=\sum_{\text {bpms }} y_{i}^{2}+\omega^{2} \sum_{\text {bpms }}\left(y_{\Delta E, i}-y_{i}\right)^{2}+\beta^{2} \sum_{\text {corrs }} \theta_{m}^{2}
$$

or, solve the system of equations:

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{c}
b-b_{\mathbf{0}} \\
\omega\left(\eta-\eta_{\mathbf{0}}\right) \\
\mathbf{0}
\end{array}\right)}=\underbrace{\left(\begin{array}{c}
\mathbf{R} \\
\omega \mathbf{D} \\
\beta \mathbf{I}
\end{array}\right)}\left(\begin{array}{c}
\theta_{\mathbf{1}} \\
\vdots \\
\vdots \\
\theta_{m}
\end{array}\right) \\
& \text { measured observables response matrices } \xrightarrow[\text { unknowns }]{\text { (}}
\end{aligned}
$$

(PLACET Simulation, courtesy of D.Schulte)

Example of RF Alignment in the CLIC main linac

RF Alignment:

- Each structure is equipped with a wakefield monitor
- Up to eight structures on one movable girders
Before correction:

After correction:

$=$

(PLACET Simulation, courtesy of D.Schulte)

DFS Tests at FACET / SLAC

(A.Latina, E.Adli, J.Pfingstner, D.Schulte)

Tolerance to long wavelengths

Tolerance Table

Element	error	with respect to	alignment	
			ILC	CLIC
Structure	offset	girder	$300 \mu \mathrm{~m}$	$10 \mu \mathrm{~m}$
Structure	tilts	girder	300μ radian	$200(*) \mu \mathrm{m}$
Girder	offset	survey line	$200 \mu \mathrm{~m}$	$9.4 \mu \mathrm{~m}$
Girder	tilt	survey line	20μ radian	9.4μ radian
Quadrupole	offset	girder/survey line	$300 \mu \mathrm{~m}$	$17 \mu \mathrm{~m}$
Quadrupole	roll	survey line	300μ radian	$\leq 100 \mu$ radian
BPM	offset	girder/survey line	$300 \mu \mathrm{~m}$	$14 \mu \mathrm{~m}$
BPM	resolution	BPM center	$\approx 1 \mu \mathrm{~m}$	$0.1 \mu \mathrm{~m}$
Wakefield mon.	offset	wake center	-	$5 \mu \mathrm{~m}$

(courtesy of D.Schulte)

Conclusions

- Element misalignments can greatly damage the beam, inducing emittance growth and beam breakup
- CLIC budgets are very tight: $\Delta \epsilon_{x}=60 \mathrm{~nm}$ and $\Delta \epsilon_{y}=10 \mathrm{~nm}$ in the main linac
- Standard Pre-Alignment techniques are not sufficient to meet the CLIC requirements:
- tightest tolerance is $14 \mu \mathrm{~m}$ over a window of 200 m
- Powerful beam-based techniques have been invented and tested experimentally
- PACMAN + Beam line design + Beam-based Alignment:
wonderful technical achievements!

