High-precision miniaturized rotating PCB coil for small magnet aperture

Presentation PACMAN WORKSHOP

Giordana Severino

_

	Project Leader:	H. Mainaud Durand
	CERN Supervisor:	M. Buzio
	Fermilab Supervisor:	J. DiMarco
	University Supervisor:	Prof. P. Arpaia
Instrumentation & Measurement for Particle Accelerator Lab	milab	CERN European Commission

OUTLINE

• 1. Understanding PCB probe design

- "Blind-eye" behavior of DQB PCB radial coil as function of layers thickness
- How to move the BE of the DQB signal
- DB and QB bucking dependence from coil thickness

• 2. PCB Manufacturing:

- Types of production
- Methods used for CERN PCB miniaturized coil

• 3. PCB rotating coil calibration

- Classical calibration
- CERN in-situ
- FERMILAB in-situ
- Fermilab individual rotation calibration (IRcal)
 - LabVIEW program for IRcal
 - Measurements with Fermilab setup

• 4. Small PCB CLIC coil:

- Short coil
- Long miniaturized coil
- Test-Bench

5. Alternative to standard PCB coil:

• Ribbon Cable probe (RC probe): new project at FERMILAB

Instrumentation & Measurement for Particle Accelerator Lab

OUTLINE

Magnet alignment challenge...

- The rotating coil method can be used for the magnet alignment. It can measure the magnet magnetic axis position by harmonic feed-down:
 - **Relative:** The magnet magnetic axis is referred to the geometrical center
 - **Referenced:** The magnet axis position is referred to external fiducials
- From the measured harmonic content other important magnet characteristics can be determined:
 - Integral field gradient
 - Magnet field harmonics
 - Main field direction
- <u>Results can be cross-checked with vibrating-wire method</u>

Introduction

Rotating coils can be designed with different configurations

1111 1111 1111 1111 1111

<u>Non-board bucking</u> <u>On-board bucking</u> <u>Independent</u> <u>digit</u> on-l

Independent output for digital bucking and on-board bucking

- Generally designed to have on-board DB DQB DQSB
 - Rotating coils with on-board bucking able to buck-out any harmonic order can be designed according to magnet apertures

Independent coils outputs for digital bucking or

Tangential coils design

External analogue bucking

DB: Dipole BuckingDQB: Dipole Quadrupole BuckingDQSB: Dipole Quadrupole Sextupole Bucking

Studies for an optimized miniaturized PCB rotating coils design

"Blind eye" (BE)

Length fixed to 1 m since the coil is longer than the magnet

for Particle Accelerator Lab

x

BE behavior of DBQ PCB radial coil as function of layers thickness

- Radial PCB coil with on-board bucking shows for some values of layers thickness a tangential behavior, not typical of radial coils.
- Coil assembly (sum of coils with different chirality) has a relative minimum similar to the tangential coil BE.
- Tangential coils DQB show a non homogeneous sensitivity
- Radial coils DQB show a homogenous sensitivity for small board thickness compared to the most external track radius.

To determine the BE cause and behavior:

- Simple case study focusing on a radial coil with on-board bucking with only two layers, 1 turn and length of 1 m and outermost trace of 10 mm.
- Evaluation of the undesired tangential component, present because thick coils are not purely radial

"Blind eye" behavior of DBQ PCB radial coil as function of layers thickness

Superposition of effects → Coil's radial and tangential components study, sum of the components' effect → Kn factors calculation.

At this aim, we approximate the system as linear, this will bring an error to higher-order harmonics

This error is extremely small and the radial/tangential separation gives the possibility to see the effects due to the undesired tangential component resulting from the layer thickness

"Blind eye" behavior of DBQ PCB radial coil as function of layers thickness

 \rightarrow it is clear that the BE behavior, usually associated with tangential coils, is due to the radial component instead.

The sum of the four coils shows BE behavior for big values of layer thickness.

Coil thickness as % of max radius	BE harmonic position (n)
4%	NO BE until harmonic $n=20$
8%	BE at harmonic harmonic $n=20$
10%	BE at harmonic harmonic $n=16$
13%	BE at harmonic harmonic n=12.5
16%	BE at harmonic harmonic n=10.5
19%	BE at harmonic harmonic $n=9$

The study must be extended to the case of multiple layers :

In this case, the BE effect can be less strong due to the combination of BE effect of each layer with slightly shifted position

COIL THICKNESS

OPTIMIZATION

for Particle Accelerator Lab

How to move the BE of the DQB signal Study

Customize the coil performances according to the magnet under test

The study was done for a two layers DQB coil

By only varying the thickness of the main coil it is possible to move the blind-eye and do a selective bucking of one single desired harmonic

-AZ

Possible manufacturing methods for rotating coils

Printed circuit boards

- "Subtractive" manufacturing

Rigid boards - Planar geometries ->50 -40 um tracks

Flex boards -Can be bent (< 4 layers)

->30 um tracks

-Necessity of tooling to avoid flex variations during manufacturing **Tracks material**: Copper

-<u>IMPORTANT</u>:

to choose the good manufacturing process to fit the required tolerances

High-Density circuits require a special production

Thick film printed circuit boards

-"Additive" manufacturing (Serigraphic)

- On ceramic material (Glass, synthetic sapphire...)

3D shape can be done but width special tooling and is something of custom

- One mask for each layer with a different pattern technique suitable for high number of copies

Not suitable for tracks: below 100 um

Tracks material :

Gold: expensive **Silver :** Problem of Ag migration in dielectric (multilayers) also with Pd

nentation & Measurement Particle Accelerator Lab

3D printed boards

"Additive" manufacturing

Aerosol Printing: -High density micro-droplets Inkjet: Low density inks

-Tightly Focused

Tracks material : Ag nanoparticles (Migration can be avoided)

- 3D shape can be done easily on one layer
- Multilayer

Possible: 50 um tracks

spaces.

3. PCB rotating coil calibration

	CLASSIC CALIBRATION	CERN Displacement calibration	FERMILAB IN-SITU calibration	INDIVIDUAL ROTATION CALIBRATION
Board bucking type	No on-board bucking	No on-board bucking	on-board bucking	on-board bucking
Calibration frequency	Repeated as needed due to coil ageing effect and undesired displacement	Repeated as needed due to coil ageing effect and undesired displacement	Use as needed due to coil ageing effect and undesired displacement	Automatic update: Performed with every measurement
Magnets	Needs dipole and quadrupole reference magnets	Needs a quadrupole reference magnet	Reference magnet not needed, calibration done in situ	Reference magnet not needed, calibration performed with every measurement
Tooling	Dedicated custom tools	Needs precision linear stage	No linear stages needed	No linear stages needed
Calibration results metrology crosscheck	Not implemented	Not implemented	Implemented	Implemented
Use with short magnet	Can induce error	Can induce error	Can induce error	No induced error

CERN in situ calibration	Fermilab in situ calibration	Individual rotation calibration (IRcal)
Coil area calibration: Needs a SSW measurement of the magnet integral field. The magnet strength, corresponding to the integrated quadrupole gradient, is used to calibrate the coil effective width and area. Rotation radius calibrated by measuring feed down dipole variation due to a coil and magnet relative displacement.	Error in PCB shaft assembly are calibrated: Vertical displacement error D Radial error Results from UB <i>strength</i> to DB comparison	Error in PCB shaft assembly are calibrated: Vertical displacement error D Radial error Results from UB <i>strength</i> to DB comparison
	Pcb median plane ♥	1.7- E 1.65- E 1.65- E 1.65- E 1.65- E 1.55- I.55- I.45-
		-> Uses a matrix of kn for both radial displacement Dx and Dy Effective width can be measured from control tracks on both extremities
PACHAR ELLES	Instrumentation & Measurement for Particle Accelerator Lab	versitä studi sunnio

LabVIEW program for individual rotation calibration (IRcal) Implemented during the secondment activity

A matrix of sensitivity factors is created, representing successive board displacements for both UB and DB signals for both Dx and Dy displacements. Kn matrix are applied to each coil turn to find the final board displacement values

Individual Rotation calibration (IRcal)

Matrix of Kn to calibrate the shift of the PCB COIL both for DB and UB

The shift along the dy direction determines a smaller variation compared to the dx shift

for Particle Accelerator Lab

Program test with Fermilab Rotating coil Probe

The Program was tested with the Fermilab PCB coil with DB DQB and DQSB

4. Small PCB CLIC coil

Double research Gap

Old design

Old design

New design 📶

CERN

23

First PCB CLIC prototype

CLIC First Pacman Prototype

- PCB done at CERN PCB service
- Shaft for test done at Fermilab during the secondment

- High Precision Alignment Both Horizontal than longitudinal (26 layers coil)
- First version of Shaft implemented at FERMILAB is done with G10

Sagitta only due to external sapphire shaft (high young modulus), not to PCB.

Instrumentation & Measurement for Particle Accelerator Lab

First PCB CLIC prototype

CLIC First Pacman Prototype

FIRST NEW Prototype:

DQB \approx 142

Measurements done at Fermilab. Several possible improvement action will be applied already to the long version of CLIC coil 500 mm

Old Prototype Design*:

DQB ≈ 30

*IMMW 17 - INTERNATIONAL MAGNETIC MEASUREMENT WORKSHOP La Mola, Terrassa-Barcelona, Catalonia (Spain) 18-23 September 2011

Instrumentation & Measurement for Particle Accelerator Lab

Sensitivity point of view

5. Alternative to standard PCB coil

Activity during the Fermilab secondment

3d printed shaft for the ribbon COIL

RIBBON COIL HOLDER

RIBBON COIL FEATURES:

-Length 3 m

-connector will be hidden in the shaft

-3d printed shaft

 Shaft for test and design done at
Fermilab during the secondment

Designed with CATIA

Instrumentation & Measurement for Particle Accelerator Lab

Front view Scale: 6:1

RIBBON COIL CONNECTORS DESIGN

ADVANTAGES OF RIBBON COIL:

- ANY LENGTH
- $\circ \ \ \textbf{EASY TO COSTUMIZE}$
 - ADJUSTABLE LENGTH (ALSO MORE <u>THAN 3 m)</u>
- SHAFT PIECES CAN BE REUSED FOR DIFFERENT LENGTH

$\circ \ \ \textbf{EASY TO REPAIR}$

- PIECES CAN BE CHANGED INDIPENDENTLY
- THERE ARE NO DELAYS DUE TO PRODUCTION TIME:
 - THE CONNECTOR USED ARE A STANDARD PRODUCTION AND CHEAP COMPARED TO A STANDARD PCB COIL

4 Signal Layers Output signals:

-UB1 UB2 UB3 UB4 -DQB DB

4 Signal Layers Output signals:

-UB1/A UB2/A UB3/A -DQB/A DB -DQB/B UB1/B UB2/B UB3/B -DQSB

Conclusion

- Research on miniaturized rotating coils lead to building a set of design rules for high performance PCB transducers
- Using these design rules, coils' properties can be tuned to obtain an optimized design for the type of magnet under test
- Alternative designs exist for long coils
- The new long prototype for CLIC is under construction, first results will be presented in the next 2 months

LabVIEW program for IRcal MAIN SCHEME

Other Options

Rigid PCB

Thick-film

All THESE ARE EXPENSIVE!!! THERE ARE A LOT OF MANUFACTURING PROBLEMS FOR BIG SIZE COIL

Aerosol-printing Photos from Optomec site

EMI Shielding Printed onto a Dome

Instrumentation & Measurement for Particle Accelerator Lab

"Blind eye" behavior of DBQ PCB radial coil as function of layers thickness

DQB kn sensitivity factors calculated with:

- Approximated formula (red)
- Tracks coordinates, not approximated (blue)

"Blind eye" behavior of DBQ PCB radial coil as function of layers thickness

Approx. Kn: red Since the formula well approximate the Kn can be used to study the BE behavior Standard formula: blue for values of layer thickness higher than 1mm Kn at R_{ref} 0.01 m and a layer thickness of 0.002 m ×10⁻³ The undesired tangential component does not determine the blind 1.8 eye 1.6 1.8 × 10⁻³ Plot of Knradial and tangential at reference radius 0.01 m and a layer thickness of 0.002 m 1.4 Rad component: 1.6 Blue 1.2 Kn sensitivity (m²) Tang component: sitivity (m²) Red 5.0 gel 0.6 ž 0.6 0.4 0.4 0.2 0.2 0 12 13 14 15 2 3 8 9 10 11 6 11 12 14 Harmonic order n Harmonic order n Instrumentation & Measurement CERN for Particle Accelerator Lab ermilab

RIBBON COIL CONNECTORS DQB DESIGN

Different configurations have been studied for the DQB design. 4 coils configurations were chosen.

Fermilab

CERN

Instrumentation & Measurement

;ιΓΞΜΆΡΗ

for Particle Accelerator Lab

Ribbon Coil Sensitivity

RIBBON COIL CONNECTORS DQSB DESIGN

Ribbon Coil Sensitivity

Program test with Fermilab Rotating coil Probe

STD Dx (m)	STD DY (m)
4.48952E-07	6.66354E-07

The Program was tested with the Fermilab PCB coil with DB DQB and DQSB

Calibration of DX offset with the IRCAL for different acquisition

Material used for shaft and bearings

Young modulus = 431.492 GPA (Higher than: alumina, carbonfibre, Glass-fibre...)

It is not possible to use
synthetic sapphire shaft with
synthetic sapphire bearings.

Necessity of non magnetic material rings around the shaft to be in contact with olive sapphire bearings.

Material	Young Modulus E (GPA)	ρ MASS DESITY (Kg dm ⁻³)
FR-4	24	1,850
Synthetic	431.492	3.99
Sapphire		
Alumina	380	3.9
Glass-fibre	5.5	2.5
Carbon fibre	250	2

٠

• The roughness is ~50-100 nm flat surface (~100 nm for rod)

Instrumentation & Measurement for Particle Accelerator Lab

39

Long CLIC PCB coil

Production of CLIC main beam type one PCB rotating coil:

- LLLLL LULU -----...............
- -500 mm length
- -50 um tracks with 50 um space between tracks
- -10 um copper
- -50 um pre-peg and FR-4
- -14 layers

Instrumentation & Measurement for Particle Accelerator Lab

DB and QB bucking are independent from thickness

The study was done for a two layers DQB coil

Both dipole and quadrupole bucking are insensible to symmetric variations of layers thickness of singular coils

This theoretical study can be applied to an innovative PCB design for a selective bucking with a tunable BE

This is not true anymore for higher order harmonics, it is therefore possible to move the BE with different main coil thickness

First PCB CLIC prototype

On board DB and DQB bucking

Output signals:

- > UB
- > DB
- > DQB

Fiducials used for a precise alignment:

- Requires special tools
- Not compatible with mass production
- LDI high resolution model

PACMAN EUD cruit sampati portes

CLIC First

Pacman

Prototype

PCB manufactured at

CERN PCB service

Shaft for test done at Fermilab

during the secondment

Instrumentation & Measurement for Particle Accelerator Lab

PCB production: resolution problems

- When Gerber files (infinite resolution) are converted to machine format, special attention must be given to resolution settings.
- The photo illustrates the consequences of a resolution error.

RIBBON COIL CONNECTORS DESIGN

Ribbon Coil

Design with ALTIUM DESIGNER

-Production of step to verify the assembly with CATIA

4 Signal Layers Output signals:

-UB1 UB2 UB3 UB4 -DQB DB

4 Signal Layers Output signals:

-UB1/A UB2/A UB3/A -DQB/A DB -DQB/B UB1/B UB2/B UB3/B -DQSB

New coil and shaft design: Radial coil with on board dipole and quadrupole bucking

<u>Thickness</u>: 1.38mm worst case tolerance usually is of +/-10% (The tolerance expected by PCB service maximum 5%)

- Copper height of 5 um
- Internal vias pads 0.25 mm (hole 0.2 mm)
- Two external layer with 0.5 mm vias pad (hole 0.2 mm)
- 0.25 mm distance between most external track and cut
- 24 layers

New Test-bench and coil

Instrumentation & Measurement for Particle Accelerator Lab **MPALA**

del Sannio

A

- **Done one time**
- Must be repeated as needed due to the coil ageing effects
- Needs both a Dipole and a quadrupole reference magnets **CERN IN SITU-CALIBRATION:** Advantages:
- Needs only a quadrupole:
 - > The dipole variation obtained with a linear displacement done with high precision linear stages is used for the rotation radius calibration

Disadvantages:

Must be repeated after some time:

- \blacktriangleright To prevent errors due to the coil ageing effects
- > The PCB can be involuntarily displaced from its location
- ➢ If the magnet is shorter than the coil, calibration values can change due to the coil longitudinal positioning variations

Needs Linear stages:

- ► Linear stages precision determine the quality of calibration
- It is not planned for PCB coils with on-board bucking

COIL CALIBRATION

FERMILAB IN-SITU CALIBRATION:

Advantages:

- Implemented for PCB coil with on-board dipole and quadrupole bucking
- Only <u>needs a quadrupole</u>
- Does not need linear stages

Disadvantages:

- <u>Must be repeated as needed</u>:
 - \succ To prevent errors due to the coil ageing effects
 - > The PCB can be involuntarily displaced from its location
 - If the magnet is shorter than the coil, calibration values can change due to the coil longitudinal positioning variations

SELF - CALIBRATION CONCEPT:

Used to calibrate the whole PCB position:

- DB signal (radius independent)
- UB signal (radius dependent)

A metrological crosscheck measurement can be done to verify PCB calibration results and real displacement

CERN

