Claude SANZ

Early Stage Researcher 1.1 Work Package 1

2nd PACMAN Workshop 13-15/06/2016

-> Shape Evaluating Sensor: High Accuracy & Touchless

-> CuBe Ф100 mm

Requirements:

Where to go next?

THE SESHAT, THE CMM & THE WIRE

CMM: Coordinate Measuring Machine

-> Shape Evaluating Sensor: High Accuracy & Touchless

-> CuBe Ф100 mm

Requirements:

Where to go next?

THE SESHAT, THE CMM & THE WIRE

Characteristics of the Ø100µm Cu-Be wire	PACMAN		Nominal Values	Measured Values	
	Min	Max	Nominal values	CFW	GF
Electrical resistivity [$\mu\Omega$ /cm ² /cm]	-	-	5.4-11.5	8.35; σ=0.02 ⓒ	10.86; σ=0.01 😊
Limit tension [Kg]	1	-	0.5-1.3	1.176 😊	-
Yield strength [MPa]				1573	-
Micro-hardness [Vickers]	350	-	100-362	357 🙂	-
Linear mass [mg/m]	_	70	64.80	66.34 😊	65.97 😊
Diameter [µm]; variation of the diameter	90	125	100	98.5 ; σ=1.4ⓒ	99.2 ; σ=0.8 ⓒ
Form error (circularity) [μm]	_	0.5	-	2.46 μm	2.93 μm
Roughness [nm]; variation of the roughness	_	-	-	20.9 ; σ=13.2ⓒ	9.7; σ=5.4 ⓒ
Spectrometric reflectance of CFW wire	Reflected light [%]		300 400 Wavelen	Sec 500 600 70	et Meas cond Meas 00 800

SEM: Scanning Electron Microscope

AFM: Atomic Force Microscope

www.madrimasd.org

NGK: 1.76 μm

- -> Shape Evaluating Sensor: High Accuracy & Touchless
- $-> MPE_F [\mu m] = 0.3 + L/1000$
- -> CuBe Φ100 mm
- \rightarrow 3 σ < 0.5 μ m for the wire axis positioning

Requirements:

- -> Weight <1.2 kg
- -> Width <100 mm

- -> Stand magnetic field > 15 mT

CMM: Coordinate Measuring Machine

- -> Can be calibrated

Where to go next?

THE SESHAT, THE CMM & THE WIRE

- -> Shape Evaluating Sensor: High Accuracy & Touchless
- $-> MPE_F [\mu m] = 0.3 + L/1000$
- -> CuBe Ф100 mm
- \rightarrow 3 σ < 0.5 μ m for the wire axis positioning

Requirements:

- ->
- -> Weight <1.2 kg
- -> Width <100 mm
- ->
- ->
- -> Stand magnetic field > 15 mT
- -> Can be calibrated
- ->

Where to go next?

THE SESHAT'S SENSING ELEMENT

CMM & PACMAN requirements:

- Light
- ▶ Small
- ► Can stand strong magnetic fields
- ▶ Highest repeatability
- Measuring the form
- Do not disturb the wire
- Possible to calibrate
- ► Fitting with the CMM translation

Cranfield UNIVERSITY

- Sensors available on the market:
 - Low force touch probes
 - Eddy current probes
 - Acoustic probes
 - Optical sensors
 - Interferometers
 - Confocal chromatic (several providers)
 - Shadow based
 - Confocal
 - Fringe pattern recognition
 - Camera based
 - Tunnel effect probes
 - Capacitive

- -> Shape Evaluating Sensor: High Accuracy & Touchless
- $-> MPE_{F} [\mu m] = 0.3 + L/1000$
- -> CuBe Ф100 mm
- \rightarrow 3 σ < 0.5 μ m for the wire axis positioning

Requirements:

- -> Stiffness
- -> Weight <1.2 kg
- -> Width <100 mm
- ->
- ->
- -> Stand magnetic field > 15 ml
- -> Can be calibrated
- ->

Where to go next?

THE SESHAT'S MOUNT FOR THE CHROMATIC CONFOCAL SENSOR

- ➤ The parts constituting the SESHAT:
 - ✓ The chromatic confocal sensor
 - A rotor: aluminium is well modelled, cheap and easy to handle, rather light
 - A stator which can be linked to the CMM: with a three ball plate, in aluminium
 - A rotary mechanical connection between the stator and the rotor: a bearing
 - Something mastering the rotor's move: a motor
 - Something giving information on the position with high accuracy: an encoder

How to reach high Accuracy?

- Lowest random motion
 - ➤ Highest stiffness for the assembly
 - > Low impact of the bearing surfaces
 - Isostaticity (or reduced hyperstaticity)
 - ➤ A well mastered move: a piezo motor
- Reduced vibrations
 - ➢ High damping effect
 - > Fitting Eigen frequencies: the motor's vibrations frequency should fit
- Well known position and high accuracy positioning
 - Reduced Abbe offset: the encoder is as close as possible to the sensor
 - ➤ Accurate positioning of the rotor: the motor does nanometric steps

Air bearings: 12 pads, mounted on ball screws, opposite each other

- -> Shape Evaluating Sensor: High Accuracy & Touchless
- $-> MPE_{F} [\mu m] = 0.3 + L/1000$
- -> CuBe Φ100 mm
- \rightarrow 3 σ < 0.5 μ m for the wire axis positioning

Requirements:

- -> Stiffness
- -> Weight <1.2 kg
- -> Width <100 mm
- -> Tight tolerances <2 μm
- \rightarrow Hardness > = 1175 kg/mm²
- -> Stand magnetic field > 15 mT
- -> Can be calibrated
- -> The rotor must be open

Where to go next?

THE SESHAT'S MOUNT FOR THE CHROMATIC CONFOCAL SENSOR

- ➤ The parts constituting the SESHAT:
 - ✓ The chromatic confocal sensor
 - ✓ An aluminium rotor
 - ✓ An aluminium stator with the right plate
 - ✓ Air bearing bringing high stiffness and high quality for the rotation
 - ✓ A piezo motor fitting with the miscellaneous requirements
 - ✓ A high accuracy encoder as close as possible to the sensor
 - The aluminium part of the stator should be stiff enough
 - > The stator is quite large
 - > The weight is higher
- The air pads require very tight tolerances on form and surface quality: the form error should be less than 2.5 μ m on the open rotor (due the air gap size of 5 μ m)
 - ➤ A company must be able to reach these tolerances!
 - > The machine tool should make it
- The piezo motor requires a hard material to walk on: typically alumina ceramic
 - > An alumina ring must be inserted in the aluminium rotor and opened
 - There is a high risk of breaking the ring with the motor
- The encoder has a minimum bending radius of 200 mm
 - > The rotor has a minimum radius
 - > The minimum weight is higher

Let's have a look at the SESHAT!

- -> Shape Evaluating Sensor: High Accuracy & Touchless
- $-> MPE_F [\mu m] = 0.3 + L/1000$
- -> CuBe Ф100 mm
- $\rightarrow 3\sigma < 0.5 \mu m$ for the wire axis positioning

Requirements:

- -> Stiffness
- -> Width <100 mm
- -> Tight tolerances <2 μm
- \rightarrow Hardness \Rightarrow = 1175 kg/mm²
- -> Can be calibrated

Where to go next?

- -> Shape Evaluating Sensor: High Accuracy & Touchless
- $-> MPE_F [\mu m] = 0.3 + L/1000$
- -> CuBe Φ100 mm
- \rightarrow 3 σ < 0.5 μ m for the wire axis positioning

Requirements:

- -> Stiffness
- -> Weight <1.2 kg
- -> Width <100 mm
- -> Tight tolerances <2 μm
- -> Hardness > = 1175 kg/mm^2
- -> Stand magnetic field > 15 mT

CMM: Coordinate Measuring Machine

- -> Can be calibrated
- -> ..

Where to go next?

THE SESHAT'S MOUNT FOR THE CHROMATIC CONFOCAL SENSOR

- ➤ The parts constituting the SESHAT:
 - ✓ The chromatic confocal sensor
 - An aluminium rotor
 - An aluminium stator with the right plate
 - ✓ Air bearing bringing high stiffness and high quality for the rotation
 - ✓ A piezo motor fitting with the miscellaneous requirements
 - ✓ A high accuracy encoder as close as possible to the sensor
 - > The weight is too high
 - Weight optimization should be performed
 - > Stiff and light: Carbon and honey comb structure + peek
 - > The structure is larger than the maximum width allowed
 - > Peek is very unstable with temperature variations
 - > There is a high risk of breaking the ring with the motor
 - > The hard material should be very well bounded to the rotor
 - For the prototype and the proof of concept, it will be plain alumina
 - ➤ Optimisation is under process: 3D printed titanium or Scalmalloy with an alumina ring is being considered (Ti and Al₂O₃ behave similarly)

- -> Shape Evaluating Sensor: High Accuracy & Touchless
- $-> MPE_F [\mu m] = 0.3 + L/1000$
- -> CuBe Φ100 mm
- \rightarrow 3 σ < 0.5 μ m for the wire axis positioning

Requirements:

- -> Stiffness
- -> Weight <1.2 kg
- -> Width <100 mm
- -> Tight tolerances <2 μm
- \rightarrow Hardness \Rightarrow = 1175 kg/mm²
- -> Stand magnetic field > 15 mT
- -> Can be calibrated
- -> ..

Where to go next?

WHERE TO GO NEXT...

- Check independently the parts constituting the SESHAT:
 - The chromatic confocal sensor
 - A rotor
 - A stator with the right plate
 - Air bearing bringing high stiffness and high quality for the rotation
 - A piezo motor fitting with the miscellaneous requirements
 - A high accuracy encoder as close as possible to the sensor
- > Assemble the SESHAT prototype and proof the concept
 - Measure the influence of the air pad's air stream on the wire
- > Find the optimal material and technique to lighten the SESHAT
- ➤ Adapt the sensor on the CMM
 - Determine and apply the best method for the sensor calibration
 - Determine and apply the integration strategy for using the sensor with Q7
- Compare the results with the simulations being performed
- > Understand the gap between the contact & non-contact from measurements

Thank you for your attention...

Do you have questions?

2nd PACMAN Workshop 13-15/06/2016

PACMAN'S REFERENCE WIRE CHOICE OF THE WIRE PROVIDER

