

Active isolation of an extended structure with fused sensors

Christophe Collette

Université Libre de Bruxelles (Belgium)

Active isolation: Inertial control

Dream

Reality

- How to measure x? (Peter & Jennifer's talk)
- Architecture: where are the sensors/actuators?
- How to control?

Sensor size and noise

Design constraints and control bandwidth

Low frequency isolation → Large seismometer <u>Disadvantages:</u> difficult to collocate, flexible modes in the control bandwidth, phase lag...

System design and control bandwidth

Subtle compromise between sensor noise and sensor size

Sensor fusion

COLLETTE C. and MATICHARD F., Sensor fusion methods for high performance active vibration isolation systems, *Journal of sound and vibration*, 2015, vol.342, 1-21.

Inertial sensor merged with:

CLIC sketch

Main beam 2000 quadrupoles

1 nm >1 Hz

Final focus
4 quadrupoles

0.15 nm > 4 Hz

Main beam 2000 quadrupoles

1 nm >1 Hz

CLIC final focus

Supporting an extended object

- Rigid extended frame
- High authority along z
- Low authority along x
- Some stiffness along y
- Redundancy: 8 mounts
- Tunable vertical/horizontal decoupling

Test bench

COLLETTE C., TSHILUMBA D., NASSIF F., FURNEMONT R., JANSSENS S., ARTOOS K., Vibration isolation of an extended object, Euspen's 15th conference, June 2015 (Leuven, Belgium).

(A) COIL-FREE ACTUATOR (piezoelectric in series with a metallic suspension).

(A) COIL-FREE SENSOR (optical inertial sensor used in the feedback loop).

- 1. Extended frame
- Metallic suspension Paulstra (7002-JA)
- Piezoelectric stack actuator (APA-100M)
- Piezoelectric force transducer (APA-100M)
- 5. Independent geophone (GS-11D)
- Interferometric inertial sensor (NOSE)

Active control strategy

- Low frequency:
 - Centralized
 - Inertial control

- High frequency:
 - Decentralized
 - Force control

Open loop transfer function

Control OFF

_____ Control ON

- 5/50 Reduction
- No spillover

Conclusions

- Support concept proposed
- Fusion of inertial sensor (LF) and force sensor (HF)
- Isolation in both vertical and lateral direction

Control does not rely on the knowledge of the plant

Future work

- Use the optical inertial sensor
- Improve voltage amplifier
- Improve decoupling of axes