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OUTLINE

 Stretched-wire systems for magnetic measurements

 Stretched-wire and vibrating-wire methods

 Achievements

 Comparing stretched and vibrating wire 

 Performance optimization for the vibrating wire

 Preliminary measurements on the CLIC Main Beam Quadrupole

 The PACMAN stretched-wire system
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44,020 
magnets for 

CLIC

Two-beam technology: drive and main beams

Main beam quadrupole

V. AA., “A Multi-TeV linear collider based on CLIC technology: CLIC Conceptual 

Design Report”. CERN-2012-007. 2012.

Drive beam quadrupole

Quadrupole magnets to focus 
the beams

 40 000 units in the drive beam

 4020 units in the main beam
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Wire-based 
transducers

 A measurement system 
for:

 field strength and 
direction

 field quality

 field profiles

 magnetic axis

 Compliant with different 
magnet types and 
geometries

magnet

Wire
Φ0.1 mm conducting wire (Cu-Be alloy)

Tensioning
motor

Wire displacement
stagesOptical vibration

sensors

Wire displacement
stages

magnet

P. Arpaia, C. Petrone, S. Russenschuck, L. Walkiers. “Vibrating-wire measurement method for centering
and alignment of solenoids”. JINST – Journal of Instrumentation, 2013.
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Magnetic axis 
localization

Magnetic axis: 

 Locus of points where the magnetic flux density is zero

 Reference for the magnet alignment

• The wire materializes the magnetic axis
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Stretched 
wire method

Main measurement system for LHC magnets

integrated field strength

field direction

magnetic axis

J. Di Marco et al., “Field alignment of quadrupole magnets for the LHC interaction Regions”. IEEE Transactions on 
Applied Superconductivity, 2000.

d

Magnetic center coordinates


flux

Faraday’s law
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Vibrating wire 
method

A. Temnykh. “Vibrating wire field-measuring technique”.  Nuclear Instruments and Methods in Physics Research, 1997.

Feeding the wire by alternating current

(Lorentz force)

Wire in magnetic field

Measure wire vibrations

(X and Y components)

Relate vibrations to 

magnetic field

MAG

vibration

detectors
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Locating 
the axis
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Magnet center

The first wire eigenmode is excited when
off-centered
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The second wire eigenmode is excited 
when misaligned in angle

L: wire length
T: tension
ρ: linear mass density

Typical values
f1 = 120 Hz  - f2 = 240 Hz
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Magnetic center as a function of the magnet strengthBackground 
field 

influence

Actual center

Apparent 

center

xa = xc -
dE
kggL

Fit to the model

A B

2/L

EB

Correction of non-homogeneous background fields

• Earth magnetic field

• Fringe field from equipment

P. Arpaia, D Caiazza, C. Petrone, S. Russenschuck. “Performance of the stretched- and vibrating-wire techniques and 
correction of background fields in locating quadrupole magnetic axes”. IMEKO World Congress, Prague, 2015.
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Achievements: 
comparing 

stretched- and 
vibrating-wire 

methods

The two methods agree within the measurement precision 
• After corrections for background fields

• and multipole field errors

Vibrating wire preferred if
• Multipole field errors are unknown

• Low strength and small wire displacement (linked flux < 120 µWb)

P. Arpaia, D Caiazza, C. Petrone, S. Russenschuck. “Performance of the stretched- and vibrating-wire techniques and 
correction of background fields in locating quadrupole magnetic axes”. IMEKO World Congress, Prague, 2015.

Stretched or vibrating?
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Performance 
optimization 

for the 
vibrating wire
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MBQ
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Outcomes:

Excitation frequency lower than resonance for 
more stability

Long wire and high tension for improving 
repeatability

Repeatability σc x y m.u.

1-m wire length ±2.6 ±4.6 µm

4-m wire length ±0.9 ±1.1 µm

P. Arpaia, D Caiazza, C. Petrone, S. Russenschuck. “Uncertainty analysis of a vibrating-wire system for magnetic axes
localization”. ICST - International conference on sensing technology, Auckland, 2015.
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Preliminary 
tests on the 
Main Beam 
Quadrupole
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CLIC main beam quadrupole

Magnet 
current

126 0 0 0 0

65 3.8 -0.9 0.9 4.6

4 2.9 3.1 -2.3 -5.1

A µm µm µrad µrad

Measurements taken at different magnet currents 
and referred to the axis at nominal gradient

Repeatability

• Within ±0.2 µm for the centers

• Within ±0.9 µrad for the angles (worst cases)

• Also at 4 A

Alignment by vibrating wire method
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Compatibility 
tests
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 The wire is stable when moving the CMM table
 The wire is stable when moving the CMM arm
 There is no influence of the cooling system

No factor 
impacting the 
operation of the 
wire system

CMM ENVIRONMENT

Thanks to Didier Glaude for operating the CMM
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PACMAN 
Wire system
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Marble support

Marble support

Based on an existing wire 
system

Keyence LS9000 CCD optical micrometres in x-y 
mount based in CCD technology

6 mm sensitive range

Components 
received and 

being validated
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Conclusions

 Vibrating-wire method for alignment of the Main Beam 

Quadrupole

Low powering (4 A) feasibility

Correction of the background field

Compatibility with the CMM environment

 The PACMAN stretched-wire system

Linear displacement stages received and being validated

Hardware and software being prepared
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SPARES
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 1. Step-wise co-directional scan
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Measurement procedure

MBQ

Vibration amplitude 
• With phase change
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 2. Step-wise counter-directional scan
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Measurement procedure

MBQ

Vibration amplitude 
• with phase change

BA

BA

yyy
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
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Project /

Background

 Linearity

 Plane motion

 Uniform and constant tension

 Small deflections

 Constant length

 Uniform mass distribution

Assumptions and mathematical model
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Project /

Background

Working frequencies for max sensitivity

ResonancesDriving current frequency tuning

Measurement system design
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 No magnet on the measurement 
station

• Background fields 
– 2% alteration of first harmonic

• Elliptically polarized trajectory
– in resonance condition

Predicted in:
J. A. Elliott. “Intrinsic nonlinear effects in vibrating strings”, 
American Journal of Physics, 1989

Project /

Experimental 
characterization

Background field & elliptic motion
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 Around resonance
 Non-constant oscillation amplitude!!!

 Effect depending on the excitation 
frequency: minimal in resonance 
condition (5%)

Possible reasons

• Non constant length 
and/or tension

• Non ideal clamping 
(friction on the supports)

• Excluded: coupling with 
ground vibrations

Project /

Experimental 
characterization

Resonance instability
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• Overtone amplitude from 2% to 7% of the main 
tone

– Depending on system configuration

• Overtones not contained in the current excitation 
signal

Nonlinearity!

Project /

Experimental 
characterization

overtones

main tone

Nonlinearity and overtones
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Project /

Results

 Magnetic axis measurement + fiducial
markers localization

• In collaboration with EN-MEF-SU (Large 
Scale Metrology Section)

 Both center and tilt were measured by the
vibrating wire

 Axis determination with +3 μm horizontal 
and +4 μm vertical precision
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Magnetic center as a function of the 
magnet current

CLIC DBQ (12 T integrated gradient) on the 
fiducialization bench with vibrating wire system

M. Duquenne et al., “Determination of the magnetic axis of a 
CLIC drive beam quadrupole with respect to external alignment 
targets using a combination of wps, cmm and laser tracker 
measurements”. Proceedings of IPAC2014, Dresden, 2014.

Axis localization of a CLIC Drive Beam quadrupole
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Project /

Results

Uncertainty analysis

Design of experiments (Taguchi)

Performance
• Repeatability (σ)
• Sensitivity (s)

VW system

Configuration parameters
L/Lm, T, δ, WP, fexc

Sw , ϑs
Noise parameters

Experiment# L/Lm T [g] δ [V] WP [V] sw [m/s] Δfexc [Hz] ϑs

1 5.3 600 0.1 5.7 0.3 0 0

2 5.3 900 0.7 6.1 0.15 -0.5 -5

3 5.3 1100 1.5 6.5 0.7 -1 -10

4 10.14 600 0.1 6.1 0.15 -1 -10

5 10.14 900 0.7 6.5 0.7 0 0

6 10.14 1100 1.5 5.7 0.3 -0.5 -5

7 20.4 600 0.7 5.7 0.7 -0.5 -10

8 20.4 900 1.5 6.1 0.3 -1 0

… … … … … … … …

• Choice of parameters and 
range

• Definition of performance 
characteristic

• Planning of experiments
• Analysis

A linear model to relate the 
performance to the parameters

performance mean

parameter effect

model uncertainty
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Project /

Results

Optical sensors for measuring wire vibration

Phototransistors
 cheap 
 very sensitive

Fiber optics
 immune to magnetic 

field 

CMOS sensors
 linear
 wide range

Need piezo-stages to hold the 
working point
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Phototransistors Fiber optics units

Project /

Results

Characterization

Range: ̴50 μm
Sensitivity: 28.4 V/mm

Range: ̴40 μm
Sensitivity: 26.1 V/mm
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P. Arpaia, M. Buzio, J. G. Perez, C. Petrone, S. Russenschuck, L. Walckiers.
“Measuring field multipoles in accelerator magnets with small-apertures by an oscillating wire moved on a circular trajectory”, JINST -
Journal of Instrumentation, 2012

	

• Sensors: 
phototransistor Sharp
GP1S094HCZ0F

• Current generator: 
Keithley 6351 

• Common marble
support for magnets 
and stages
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Measurement method

• Measure the frequency response
– Vibration amplitude and phase

• Calculate the longitudinal field profile 
(by inverse Fourier transform)

Natural vibration modes

• Fit with the mathematical model
– Longitudinal field coefficients
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• Reconstruction error 3% of the field 
peak

• Repeatability 2%
– RMS difference

• Bandwidth limitation

• Uncertainty sources


