Vibrating-wire measurements for the alignment of small-aperture magnets

2nd PACMAN Workshop 13-15/06/2016

Pasquale Arpaia, University of Naples Federico II

<u>Domenico Caiazza</u>, University of Sannio

Carlo Petrone, CERN

Stephan Russenschuck, CERN

OUTLINE

- Stretched-wire systems for magnetic measurements
- Stretched-wire and vibrating-wire methods
- Achievements
 - Comparing stretched and vibrating wire
 - Performance optimization for the vibrating wire
 - Preliminary measurements on the CLIC Main Beam Quadrupole
- The PACMAN stretched-wire system

44,020 magnets for CLIC

Two-beam technology: drive and main beams

Quadrupole magnets to focus the beams

- √ 40 000 units in the drive beam
- ✓ 4020 units in the main beam

V. AA., "A Multi-TeV linear collider based on CLIC technology: CLIC Conceptual Design Report". CERN-2012-007. 2012.

Wire-based transducers

A measurement system for:

field strength and direction

field quality

field profiles

magnetic axis

Compliant with different magnet types and geometries

P. Arpaia, C. Petrone, S. Russenschuck, L. Walkiers. "Vibrating-wire measurement method for centering and alignment of solenoids". *JINST – Journal of Instrumentation*, **2013**.

Magnetic axis localization

Magnetic axis:

- Locus of points where the magnetic flux density is zero
- Reference for the magnet alignment
- The wire materializes the magnetic axis

Stretched wire method

Main measurement system for LHC magnets

- ✓integrated field strength
- ✓ field direction
- √ magnetic axis

Magnetic center coordinates

$$x_c = x_0 - \frac{d}{2} \frac{\Phi(x_0, x_0 + d) - \Phi(x_0, x_0 - d)}{\Phi(x_0, x_0 + d) + \Phi(x_0, x_0 - d)}$$
$$y_c = y_0 - \frac{d}{2} \frac{\Phi(y_0, y_0 + d) - \Phi(y_0, y_0 - d)}{\Phi(y_0, y_0 + d) + \Phi(y_0, y_0 - d)}$$

J. Di Marco et al., "Field alignment of quadrupole magnets for the LHC interaction Regions". *IEEE Transactions on Applied Superconductivity*, 2000.

Vibrating wire method

A. Temnykh. "Vibrating wire field-measuring technique". Nuclear Instruments and Methods in Physics Research, 1997.

Magnet center

The first wire eigenmode is excited when off-centered

$$f_1 = \frac{1}{2L} \sqrt{\frac{T}{\rho}}$$

L: wire length

T: tension

 ρ : linear mass density

Locating

the axis

Magnet angles

The second wire eigenmode is excited when misaligned in angle

Typical values $f_1 = 120 \text{ Hz} - f_2 = 240 \text{ Hz}$

Instrumentation & Measurement

for Particle Accelerator Lab

Correction of non-homogeneous background fields

- Earth magnetic field
- Fringe field from equipment

Background field influence

Fit to the model

Magnetic center as a function of the magnet strength

P. Arpaia, D Caiazza, C. Petrone, S. Russenschuck. "Performance of the stretched- and vibrating-wire techniques and correction of background fields in locating quadrupole magnetic axes". IMEKO World Congress, Prague, 2015.

Achievements: comparing stretched- and vibrating-wire methods

- ✓ The two methods agree within the measurement precision.
 - After corrections for background fields
 - and multipole field errors
- ✓ Vibrating wire preferred if
 - Multipole field errors are unknown
 - Low strength and small wire displacement (linked flux < 120 μWb)

P. Arpaia, D Caiazza, C. Petrone, S. Russenschuck. "Performance of the stretched- and vibrating-wire techniques and correction of background fields in locating quadrupole magnetic axes". IMEKO World Congress, Prague, 2015.

Performance optimization for the vibrating wire

Outcomes:

- ✓ Excitation frequency lower than resonance for more stability
- ✓ Long wire and high tension for improving repeatability

Repeatability σ_c	X	y	m.u.
1-m wire length	±2.6	±4.6	μm
4-m wire length	±0.9	±1.1	μm

P. Arpaia, D Caiazza, C. Petrone, S. Russenschuck. "Uncertainty analysis of a vibrating-wire system for magnetic axes localization". *ICST - International conference on sensing technology,* Auckland, **2015**.

Preliminary tests on the Main Beam Quadrupole

Alignment by vibrating wire method

CLIC main beam quadrupole

Measurements taken at different magnet currents and referred to the axis at nominal gradient

Magnet current				
126	0	0	0	0
65	3.8	-0.9	0.9	4.6
4	2.9	3.1	-2.3	-5.1
Α	μm	μm	μrad	μrad

Repeatability

- Within ±0.2 μm for the centers
- Within ±0.9 μrad for the angles (worst cases)
- Also at 4 A

Compatibility tests

No factor impacting the operation of the wire system

- ✓ The wire is stable when moving the CMM table
- The wire is stable when moving the CMM arm
- ✓ There is no influence of the cooling system

Thanks to Didier Glaude for operating the CMM

PACMAN Wire system

Based on an existing wire system

Components received and being validated

Keyence LS9000 CCD optical micrometres in x-y mount based in CCD technology

6 mm sensitive range

Marble support

Conclusions

- Vibrating-wire method for alignment of the Main Beam
 Quadrupole
 - ✓ Low powering (4 A) feasibility
 - ✓ Correction of the background field
 - ✓ Compatibility with the CMM environment
- The PACMAN stretched-wire system
 - ✓ Linear displacement stages received and being validated
 - ✓ Hardware and software being prepared

Thank you for your attention

2nd PACMAN Workshop 13-15/06/2016

SPARES

Measurement procedure

• 1. Step-wise co-directional scan

Vibration amplitude

• With phase change

Measurement procedure

• 2. Step-wise counter-directional scan

$$x = x_A = -x_B$$
$$y = y_A = -y_B$$

Vibration amplitude

with phase change

Background

Assumptions and mathematical model

- Linearity
- Plane motion
- Uniform and constant tension
- Small deflections
- Constant length
- Uniform mass distribution

$$u(z,t) = \frac{2I_0}{L} \sum_{m} \frac{\int_0^L B_{\rm n}(z) \sin\left(\frac{m\pi}{L}z\right) dz}{\sqrt{\left[T\left(\frac{m\pi}{L}\right)^2 - \rho\omega^2\right]^2 + (\alpha\omega)^2}} \sin\left(\frac{m\pi}{L}z\right) \sin(\omega t - \varphi_m)$$

$$\varphi_m = \arctan\left(\frac{\alpha\omega}{-\rho\omega^2 + T\left(\frac{m\pi}{L}\right)^2}\right)$$

Background

Measurement system design

Experimental characterization

Background field & elliptic motion

No magnet on the measurement station

- Background fields
 - 2% alteration of first harmonic

Domenico CAIAZZA, ESR2.1 PACMAN Mid-term review 28-29/05/2015

Experimental characterization

Resonance instability

- Around resonance
 - Non-constant oscillation amplitude!!!
 - Effect depending on the excitation frequency: minimal in resonance condition (5%)

Possible reasons

- Non constant length and/or tension
- Non ideal clamping (friction on the supports)
- Excluded: coupling with ground vibrations

Experimental characterization

Nonlinearity and overtones

- Overtone amplitude from 2% to 7% of the main tone
 - Depending on system configuration
- Overtones not contained in the current excitation signal

Nonlinearity!

Results

Axis localization of a CLIC Drive Beam quadrupole

CLIC DBQ (12 T integrated gradient) on the fiducialization bench with vibrating wire system

Magnetic center as a function of the magnet current

M. Duquenne et al., "Determination of the magnetic axis of a CLIC drive beam quadrupole with respect to external alignment targets using a combination of wps, cmm and laser tracker measurements". Proceedings of IPAC2014, Dresden, 2014.

- ✓ Magnetic axis measurement + fiducial markers localization
 - In collaboration with EN-MEF-SU (Large Scale Metrology Section)
- ✓ Both center and tilt were measured by the vibrating wire
- Axis determination with ±3 μm horizontal and +4 μm vertical precision

Results

Uncertainty analysis

- Choice of parameters and range
- Definition of performance characteristic
- Planning of experiments
- Analysis

Design of experiments (Taguchi)

Experiment#	L/L_m	T [g]	δ [V]	WP [V]	$s_w[m/s]$	Δf_{exc} [Hz]	ϑ_{s}
1	5.3	600	0.1	5.7	0.3	0	0
2	5.3	900	0.7	6.1	0.15	-0.5	-5
3	5.3	1100	1.5	6.5	0.7	-1	-10
4	10.14	600	0.1	6.1	0.15	-1	-10
5	10.14	900	0.7	6.5	0.7	0	0
6	10.14	1100	1.5	5.7	0.3	-0.5	-5
7	20.4	600	0.7	5.7	0.7	-0.5	-10
8	20.4	900	1.5	6.1	0.3	-1	0

model uncertainty

Optical sensors for measuring wire vibration

Project /

Results

- ✓ cheap
- √ very sensitive

CMOS sensors

- ✓ linear
- ✓ wide range

Results

Characterization

Range: $\sim 50 \, \mu m$

Sensitivity: 28.4 V/mm

Range: $\sim 40 \, \mu \text{m}$

Sensitivity: 26.1 V/mm

wire position

- Sensors: phototransistor Sharp GP1S094HCZ0F
- Current generator: Keithley 6351
- Common marble support for magnets and stages

P. Arpaia, M. Buzio, J. G. Perez, C. Petrone, S. Russenschuck, L. Walckiers.

"Measuring field multipoles in accelerator magnets with small-apertures by an oscillating wire moved on a circular trajectory", JINST - Journal of Instrumentation, 2012

Measurement method

- Measure the frequency response
 - Vibration amplitude and phase
- Fit with the mathematical model
 - Longitudinal field coefficients

$$C_m := \frac{2}{L} \int_0^L B_n(z) \sin\left(\frac{m\pi}{L}z\right) dz$$

Calculate the longitudinal field profile (by inverse Fourier transform)

$$B_{\rm n}(z) = \sum_{m} C_m \sin\left(\frac{m\pi}{L}z\right)$$

Metro lab

Domenico CAIAZZA, ESR2.1 2nd PACMAN Workshop 13-15/06/2016

Natural vibration modes

- Reconstruction error 3% of the field peak
- Repeatability 2%
 - RMS difference

- Bandwidth limitation
- Uncertainty sources

