# Experimental means to reduce theoretical uncertainties on $M_W$

## Oleh Kivernyk

CEA/Irfu/SPP

February 18, 2016

Oleh Kivernyk (CEA/Irfu/SPP) Experimental means to reduce theoretical unc Febr

# Measurement method

- The  $p_T^l, m_T^W$  are sensitive to precise  $M_W$  due to Jacobian peak:  $p_T^l \sim M_W/2, m_T^W \sim m_W$
- The  $p_T^l, m_T^W$  distributions are computed with MC for different  $M_W$
- Each template is compared to data
- The value which maximizes binned likelihood agreement is prefered  $M_W$



Oleh Kivernyk (CEA/Irfu/SPP)

# ptl sensitivity to $M_W$

• The  $p_T^l$  is most sensitive to  $M_W$  at LHC



- PDF uncertainties that induce a change in p<sup>l</sup><sub>T</sub> shape represent a systematic uncertainty on the M<sub>W</sub> determination
- PDF uncertainties can be propagated to  $\Delta M_W$  through the template fit method

# PDF systematics with nominal PDFs

- CT10nnlo, central set for templates
- 25\*2 orthogonal eigensets used as pseudo-data. Each pair corresponding to  $a \pm 1\sigma$  variation of the corresponding fitted PDF parameter
- For each variation (1 $\leq$ i $\leq$ 50):  $\Delta m_W^i = m_W^i m_W^0$
- Total positive uncertainty:  $\Delta m_W^2 = \sum_{\Delta m_w^i > 0} (\Delta m_W^i)^2$
- Total negative uncertainty:  $\Delta m_W^2 = \sum_{\Delta m_W^i \sim 0} (\Delta m_W^i)^2$
- Symmetrized, linearized uncertainties (0≤i≤24):

$$\Delta m_W^i = (m_W^{2i+1} - m_W^{2i+2})/2 \qquad \Delta m_W^2 = \sum_i (\Delta m_W^i)^2$$

# **PDF** systematics

### Generator level(LHC 8TeV, CT10)

Vicini et al.

### Selection criteria:

$$egin{aligned} p_{\mathcal{T}}^{l} &> 25\,GeV \ E_{\mathcal{T}}^{\prime} &> 25\,GeV \ |\eta| &< 2.5 \end{aligned}$$

## With detector effects(LHC 7TeV, CT10nnlo)

- $\rightarrow$ Smoothing Jacobian peak due to
  - Energy resolution
  - recoil resolution

## Selection criteria:

## **Template Fit**

$$29 GeV < p_T^l < 49 GeV$$

$$\downarrow$$

$$W^+ : \delta_{PDF} = 29 MeV$$

$$W^- : \delta_{PDF} = 26 MeV$$

$$30 GeV < p'_T < 50 GeV$$

$$\downarrow$$

$$W^+ : \delta_{PDF} = 21.4 MeV$$

$$N^- : \delta_{PDF} = 28.6 MeV$$

$$\rightarrow$$
How to improve?

PDF uncertainty at the Tevatron: 10MeV(CDF) and 11MeV(D0)

Oleh Kivernyk (CEA/Irfu/SPP) Experimental means to reduce theoretical unc Feb

## Improving errors

- Split W mass analyses selection into categories
- Recoil u and lepton pseudorapidity  $\eta$  are good for catigorization ightarrow PDF dependent
  - $\rightarrow$  W produced by sea quark lepton with central  $|\eta|,$  by valence quark forward leptons
  - $\rightarrow$  Less known *sc* contribution makes  $p_T^W$  to be harder
- Combine the PDF uncertainties from each category
  - $\rightarrow$  if not fully correlated, PDF error must be improved
- As alternative: one can use a category with least sensitivity to PDF(balanced with exp. error)



# Expected improvements with $p_T^W$ cut

- Studies are done for different PDF sets
- Approximate PDF reweighting:  $w = \frac{f^{new}(x_1) \cdot g^{new}(x_2)}{f^{old}(x_1) \cdot g^{old}(x_2)}$
- Illustration of the PDF error improvement with  $p_T^W < 15 GeV$  compared to no  $p_T^W$  cut
  - $\rightarrow$  Estimated PDF error  $\sim 10 \textit{MeV}$  for most advanced PDF set
  - ightarrow Difference larger between sets  $\sim 20-30 MeV$
- PDF errors are bigger for W<sup>+</sup> than for W<sup>-</sup>



## Expected improvemenets with $\eta$ cuts

- Selection cuts:  $p_T^l > 20 \text{GeV}, E_T > 20 \text{GeV}, p_T^W < 30 \text{GeV}$
- $m_T$  variable is used at reconstruction level:  $\delta_{PDF}^{CT10} = 39 MeV$  and  $\delta_{PDF}^{CT10W} = 27 MeV$

•  $\eta$  cuts:  $W^c$  :  $|\eta| < 1.3$ ;  $W^f$  :  $|\eta| > 1.6$ 

TABLE III: PDF errors on each sub-analysis, in MeV. Refer to Tab. [1] for errors on the naive analysis using all events.

|         | $7 { m TeV}$    |                | 13 TeV         |                |
|---------|-----------------|----------------|----------------|----------------|
|         | CT10            | CT10W          | CT10           | CT10W          |
| $W_c^+$ | $^{+46}_{-32}$  | $^{+39}_{-28}$ | $^{+41}_{-30}$ | $^{+36}_{-30}$ |
| $W_f^+$ | $^{+98}_{-102}$ | $^{+68}_{-78}$ | $^{+52}_{-52}$ | $^{+41}_{-42}$ |
| $W_c^-$ | $^{+20}_{-14}$  | $^{+17}_{-13}$ | $^{+29}_{-23}$ | $^{+27}_{-21}$ |
| $W_f^-$ | $^{+49}_{-57}$  | $^{+37}_{-50}$ | $^{+24}_{-35}$ | $^{+19}_{-32}$ |

TABLE IV: Resulting error on the W mass after optimal sub-experiment weighting, in MeV.

|               | CT10           | CT10W          |
|---------------|----------------|----------------|
| $7 { m TeV}$  | $^{+19}_{-12}$ | $^{+15}_{-11}$ |
| $13 { m TeV}$ | $^{+20}_{-22}$ | $^{+17}_{-21}$ |

Z.Sullivan, S.Quackenbush Link

- Errors are larger for forward leptons compared to central, W<sup>+</sup> compared to W<sup>-</sup>
- Improvement of about 60% from recombination

# PDF reweighting

- PDF reweighted with  $w = \frac{f^{new}(x_1) \cdot g^{new}(x_2)}{f^{old}(x_1) \cdot g^{old}(x_2)}$
- Works with  $\eta$  but does not recover  $p_T^W$  distribution



We reweight the complete phase space in (p<sub>T</sub>, Y) bins and A<sub>i</sub>

# Improving errors(ATLAS 7TeV)

- Break our analysis into u < 15 GeV and 15 GeV < u < 30 GeV bins, 4 lepton  $|\eta|$  bins
- CT10nnlo PDF set, uncertainties are propagated with Hessian approach separately for each category

| categories                                    |       | $ \eta  < 0.8$ | $0.8 <  \eta  < 1.4$ | $1.4 <  \eta  < 2.0$ | $2.0 <  \eta  < 2.4$ |
|-----------------------------------------------|-------|----------------|----------------------|----------------------|----------------------|
| $p_T^W < 30  GeV$                             | $W^+$ | 30.2           | 26.2                 | 22.8                 | 18.7                 |
|                                               | W-    | 34.4           | 32.1                 | 31.6                 | 37.4                 |
| $p_T^W < 15 GeV$                              | $W^+$ | 29.9           | 26.2                 | 22.8                 | 19.1                 |
|                                               | W-    | 34.6           | 31.9                 | 31.9                 | 37.3                 |
| $15  GeV < p_T^W < 30  GeV$                   | $W^+$ | 31.3           | 26.5                 | 23.5                 | 18.8                 |
|                                               | W-    | 34.8           | 32.9                 | 31.5                 | 37.1                 |
| Table: DDE errors in each sub analysis in MoV |       |                |                      |                      |                      |

Table: PDF errors in each sub-analysis, in MeV

- Larger uncertainty for W<sup>-</sup> compared to W<sup>+</sup>(because of bigger fraction of sc that produce W)
- Smaller uncertaity for forward leptons

# Improving errors(ATLAS 7TeV)

#### **Summary Table**

|              | Inclusive | 4-eta    | 8-eta u              | W+/W- 4 eta | W+/W-<br>8 eta-u |
|--------------|-----------|----------|----------------------|-------------|------------------|
| Stat Error   | W+:7.8    | W+: 7.8  | W+: 7.7              | 5.8         | 5.0              |
| Stat Ell'O   | W-: 8.9   | W-: 8.8  | W-: 8.8              | W-: 8.8     |                  |
| Suct Execu   | W+: 21.4  | W+: 18.3 | W+: 18.4             | 10.1        | 18.2             |
| Syst Error   | W-: 28.6  | W-: 27.5 | W-: 27.5             | 10.1        |                  |
| Total Freeze | W+: 22.8  | W+: 19.9 | W+: 20.0<br>W-: 28.9 |             | 19.1             |
| Total Error  | W-: 30.0  | W-: 28.9 |                      |             |                  |

The gain in systematics is statistics dependent —> expected improvement of the pdf uncertainty with more statistics —> to do gain as a function of stat error

< 🗗 🕨 🔸

# Effect of W,Z cross sections on the PDF uncertainties

- PDFs are constrained using new ATLAS data:
  - $p_T^Z$  shape
  - W,Z cross-sections
- $\bullet\,$  With new data the PDF uncertainties are reduced by 40-50%
- These are preliminary results

| Uncertainty (MeV) |    | (рТ,у) | Ai   | Total |
|-------------------|----|--------|------|-------|
| CT10              | W+ | 17.5   | 14.4 | 21.4  |
|                   | W- | 19.2   | 15.9 | 28.6  |
| CT10+ZPT          | W+ | 12.1   | 13.9 | 18.8  |
|                   | W- | 13.1   | 15.4 | 24.2  |
| CT10+ZPT+WZ       | W+ | 8.6    | 9.8  | 11.8  |
|                   | W- | 9.0    | 11.0 | 17.1  |

12 / 15

# Impact of forward muons in LHCb

- - $\rightarrow$  based on  $p_T^\mu,$  very forward muons 2  $<|\eta|<$  4.5
  - $\rightarrow$  Able to select  $W \rightarrow \mu \nu$  sample using knowledge about reconstructed muon
  - $\rightarrow$  Anti-correlated PDF uncertainties with those based on ATLAS and CMS

$$\delta_{\rm PDF} = \begin{pmatrix} {\bf G}^+ \; 24.8 \\ {\bf G}^- \; 13.2 \\ {\bf L}^+ \; 27.0 \\ {\bf L}^- \; 49.3 \end{pmatrix},$$

- Envelop of NNPDF3.0, MMHT2014 and CT10 sets is used
- G<sup>±</sup> are ATLAS/CMS PDF uncertainties(averaged in e and μ channels)
- L<sup>±</sup> are LHCb PDF uncertainties with forward muons
- Expected to increase precision of  $M_W$  at the LHC by factor 1.3 in the combination



- A few ways to reduce PDF uncertainties on the *m<sub>W</sub>* measurement are considered
  - Tighter recoil cut
  - Different lepton  $|\eta|$  regions
  - Recombination of each sub-analysis performed in  $|\eta|,$  recoil bins
- Results are compared to a few paper results
  - $W^+/W^-$  PDF uncertainties  $\rightarrow$  issue of PDF rewighting that does not catch  $p_T^W$  distribution?

14 / 15

- Small PDF errors reduction is found with recombination
- 40-50% improvement taking into account new ATLAS data
- Expected  $m_W$  improvement with LHCb forward muons (but with Run2 data)

# BACKUP

イロト イ団ト イヨト イヨト

2