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1. Introduction to DIS

A. Deep-inelastic lepton-hadron scattering

o K=(EK)

Deep-inelastic scattering cross-section:

S M



Hadron part F* (Q% = —¢° > 0, = = Q°/[2(pq)]):

FI = (=g + qqq )Fi(, Q%)

2x
- = P - T e @) +
where Fi.(z, Q%) (k = 1,2,3,L) - are DIS SF and ¢ and p are

photon and hadron (parton) momentums.

q2



B. Wilson operator expansion: Mellin moments M. (n, Q%) of
DIS SF Fi.(x, Q%) can be represented as sum

My(n, Q%) = x  Cin, Qi) Aa(n, i),
A=V205.0 “Coeff. function

where Ay (n, p1?) =< N[O}, ..., |N > are matrix elements of the

a

Wilson operators O}, .

Il There is a factorization in the Mellin-moment
space — there are Mellin convolutions in Bjorken-z

space !l



C. The matrix elements Agy(n, ;%) are Mellin moments of the
unpolarized PDF f,(n, ?).
DGLAP [= Renormgroup] equations:

a2/ Q) = 1?%%%(3)/@ oy, Q). (1)

The anomalous dimensions (ADs) v,;(n) of the twist-2 Wilson
(hereafter as = ag/(4m))

operators Om, L

(m) m

1 00
’Vab(n) — /O dr z" Wb%a(x) — mZ:O Vab (n>as ;
All parton densities are multiplies by z, t.e.

structure function = combination of parton densities.



3. Method

(C.Lopez and F.J.Yndurain, 1980,1981), (A.V.K., 1994)
Here | present briefly the method, which leads to the possibility

to replace the Mellin convolution of two functions

fi(2) ® falo) éfﬁ@mww

by a simple products at small x.



So, if fi(z) = Byi(x,Q?) is perturbatively calculated Wilson ker-
nel and fo(z) = 2 fu(z, Q%) ~ 27 at & — 0, then
f1(x) @ folz) = Mp(1+06,Q°) folw) (2)

where M;.(1 4+ 9, QQ) is the analytical continuation to non-integer
arguments of the Mellin moment My (n, Q?) of Bi(x, Q?):

Mip(n,Q%) = ff 2" *By(z, Q?) (3)

The equation (2) is correct if the moment M;.(n, Q%) has no
singularity at n — 1.

Remember !!!  The Mellin convolution of two functions

fi0)® fole) = f) C;yﬁ(y)fz(x/y)



3. Generalized double-logarithmic approach

(A.V.K. and G.Parente, 1998),

(A.Yu.lllarionov, A.V.K. and G.Parente, 2004) are an extension of
the previous studies in

(A.D.Rujula, S.L.Glashow, H.D.Politzer, S.B.Treiman, F.Wilczek
and A.Zee, 1974),

(R.D.Ball and S.Forte, 1994),

(L. Mankiewicz, A. Saalfeld and T. Weigl , 1994)

(Generalized double-logarithmic approach) = (Gen-

eralized double asymptotic scaling)



1 Leading order (LO) without quarks (a pedagogical example)

At the momentum space, the solution of the DGLAP equation is
My(n, Q%) = My(n,Qg)e™ '™

where M(n, Q%) are the moments of the gluon distribution,

Y 2 (0)
s=In (Zzgg% , as(QQ) = Oésig ) and  dg = vggﬁ(on)

The terms *yé?(n) and (3 are respectively the LO coefficients of

the gluon-gluon AD and the QCD S-function.



For any perturbatively calculable variable ()(n), it is very conve-
nient to separate the singular part when n — 1 (denoted by “Q")
and the regular part (marked as “Q)"):

Qn) = +Q(n)

—

Q

n—1

Then, the above equation can be represented by the form
Mg(n, Qz) = Mg(n, Q%)Q_UZQQSLO/(”_1>€_Egg(7”b>5LO7
with 44 = —=8C'4 and Cy = N for SU(N) group.

Finally, if one takes the flat boundary conditions
(i.e. min information about initial conditions, or

min contribution from initial conditions.)

ffa(%@%) — Aaa — Ma(naQ(Q)) — (4)




Il Modern experimental data (HERA I+I1, LHC):
 folx, Q° = 1.9GeV?) starts to decrease at z < 1073, Il

So, in a sence, the above equation

ajfg(ﬂf,Q(Q)) — Aga
should be wrong (in our approach QF << 1.9 GeV?).

Possible solution: there are higher twist corrections at low x:

T 972(:1:,62%) = Ay, but xféuu(a:,Q%) decreases at x < 1077

Usually the higher twist corrections (at least its (9*-dependence)

are not well studied.



In infrared renormalon model
(E. Stein, M. Maul, L. Mankiewicz, A. Schafer,1998)

it is possible to show:
(A.Yu.lllarionov, A.V.K. and G.Parente, 2004)

e fl(z, Q2) = e fF e, QR) + BT (w, QR),

Q Q4
where
Rrt _ 32rf 4 > 1
(w QO) _ 1550 CLq Aqln E—l_ ]’
RT4 _ 16&74 n— 1
(@.Q0) = 5/5’055(620) {A | ]7
ofy (e, Qf) = - bRﬂl(fCaQo) with ap" = ag’|, (b=g,9).

7



1.1 Classical double-logarithmic case (d,,(n) = 0)

(A.D.Rujula, S.L.Glashow, H.D.Politzer, S.B.Treiman, F.Wilczek
and A.Zee, 1974)

Then, expanding the second exponential in the above equation
k

dyaS10)
vl o2 A, I (—dggsr0
g (n, Q%) = kzo k! (n — 1)k+1

and using the Mellin transformation for (ln(l/w))k:

/Ol dllffn_z(ln(l/fwk — (n _kll)]ﬁ_l

we immediately obtain the well known double-logarithmic behavior

1 - k
fil@. @) = Ag > m(=dggsio) (In(1/2)" = Agl(oro),
where Iy(o,0) is the modified Bessel function with argument o =

QMQQSLOln(x). (R.D.Ball and S.Forte, 1994),




1.2 The more general case

For a regular kernel K'(x), having Mellin moment

(nonsingular at n — 1)

K(n) = [ dea" %K (x)

and the PD f,(x) in the form [V(Mln(l/:z:)) we have the following

equation

N

d
In(1/x)

K(2) ® falz) = K(1)fa(z) + O( )



So, one can find the general solution for the LO gluon density

without the influence of quarks

folw, Q%) = Agly(opo)e L0+ O(pp0),
where (R.D.Ball and S.Forte, 1994)

dggtSLO 9LO (0) 4
— — 1 — 22 PN
PLO= i)~ 2n(1/ey 0 99 =224 57
and if

with f as the number of active quarks.



2 Leading order (complete)

At the momentum space, the solution of the DGLAP equation at
LO has the form (after diagonalization)

Ma(n, Q%) = M (n,Q%) + M, (n,Q%) and

M;Z(n, QQ) _ Mczzt(na Q%>6—di(n)s _ ]\4C:LI:€—ciis/(77,—l)e—ai(n)s7
where (afb(n) are projectors)

<O>(n)

ME(n, Q%) = el(n)My(n,Q%),  dyy = 100"
250

(5)

As the singular (when n — 1) part of the + component of the
anomalous dimension is !l 4, = 4,5 = —8C4 Il while the —
component does not exist: !l (4_ = 0) !l | we consider below

both cases separately.



2.1 The “+” component

The analysis of the “+" component is practically identical to the

case studied before. The only difference lies in the appearance of

new terms &7 (n) 11l . If they are expanded in the vicinity of n = 1
in the form 77 (n) = g5y + (n — 1)&};, Il then for the terms
e multiplying M (n, (%), we have the same results as in previous
section:
/\/l_ —d (1
eMyn. Q%) Mo eh A lopo)e 0+ O(pp ).

~1
where the symbol M denotes the inverse Mellin transformation.
The values of o and p coincide with those defined in the previous

section because dy = dgg.



The terms £, that come with the additional factor (n — 1) in

front, lead to the following results

: k
Ay —d . 1 (=dysro)
e Lespo/(n=1) _ =+ 4
(n )ab(n_l) “ab bkz()k' (n—l)k
. 11 -
Mo e Aol —2) + 3 (~desio) (n(1/x)

k=1 k! (k —1)!
= A [0(1 —2) + proliloro)] = EpAproli(oLo);
i.e. the additional factor (n — 1) in momentum space leads to
replacing the Bessel function Iy(o7 ) by proli(oro) in z-space.
Thus, we obtain that the term £, (n)My(n, Q%) leads to the

following contribution in z space !l :

e I0(0r0) + Ehproli(oro) Ave” L0 + O(pr o)



Because the Bessel function [,,(o) has the v-independent asymp-
totic behavior !l €7/\/0 at 0 — oo (i.e. © — 0), the second
term is O(p) and must be kept only !!! when &, = 0. This is the
case for the quark distribution at the LO approximation.

Using the concrete AD values, one has
4 >
fq(2,Q%) = (A g+—A Vo(oro)e 50+ O(prp)  and

@) = L4+ L Agprohioro)e M0 1 0(pro)

where d (1) = 1 + 20f/(2760).



2.2 the “-” component

In this case the anomalous dimension is regular !!l and one has
sgb(n)Abe_d_m)S M égb(l)Abe_d_msLO + O(x)
Using the concrete AD values !l | we have
fiy (@,Q%) = — A =1%10 + O(z) anc
fi (@,@Q%) = Age™ V10 + Ofa),
where d_(1) = 16f/(270)).



Finally we present the full small x asymptotic results for PD and

F5 structure function at LO of perturbation theory:

fa(z,Q%) = £z, Q%) + fi (x,Q%) and
FQ(CE, QQ) — €~ fQ(Za Q2>

where f;,f;, fq and f, were already given before and e =
[ 2

21 7/ f is the average charge square of the f active quarks.

Extension to NLO is trivial and can be found in (A.V.K. and
G.Parente, 1998)



Extension to an abritrary form of the boundary conditions

f=4(x, QF), leads to the following changes in our analysis:

AT & fF(2,Q8), then
fi (@, @) = fi (2, Q)) ® Fi(2,Q%), (6)

where FF(z, Q?) are same as f;7(z,Q?) (shown before) but

1. no A, because the constants AT are changed to the more

complicated initial conditions £ (z, Q7).

2. with the replacement:

|
Ptolm(oro) = 1o Imi1(oro)]-



4. Fits of HERA data

At low z, the structure function Fy(z, Q?) is related to parton
densities as (A.V.K. and G.Parente, 1998)

at LO

Pyl Q%) = 1~ fulr, QP
at NLO
f

Py(z, Q%) = fq<a:cz> + 7 as(Q) fol, Q%))

Fits of HERA experimental data of the structure function F5(z, Q?)
(A.Yu.lllarionov, A.V.K. and G.Parente, 2004)
Il Only three parameters: Q% Agand A,

Agcp cannon be extract in small x Physics.
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There is a difference between our formulas and the experimental
data at low (Q? values.

There are two possibility to improve our analysis:

1. higher twist (HT) corrections;

2. Infrared modifications of the strong coupling constant.

Infrared renormalon model (E. Stein, M. Maul, L. Mankiewicz,
A. Schafer,1998) with abbitrary magnitudes has been used to esti-

mate for twist-4 and twist-6 corrections.

Now there is a good agreement with experimental data at Q2 <
2.5 GeVZ. But there are four additional parameters: the magni-
tudes AL, AL ATTO and ALTO (AfTTM = a4y, (b= q, g)
and (m = 4,6)).
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5. Analytical and “frozen” coupling constants

Two modifications of the coupling constant (G.Cuvetic,
A.Yu.lllarinov, B.A. Kniehl, and A.V.K., 2009); (A.V.K. and B.G.
Shaikhatdenov, 2012,2013,2015)

A. More phenomenological.

(G.Curci, M.Greco and Y.Sristava, 1979), (M.Greco, G. Penso and
Y.Sristava, 1980), (N.N.Nikolaev and B.M.Zakharov, 1991,1992),
(B.Badelek,J.Kwiecinski and A.Stasto, 1997), (A.M.Badalian and
Yu.A.Simonov, 1997)

We introduce freezing of the coupling constant by changing its
argument Q% — Q% + MpQ, where M, is sually the p-meson mass.
Thus, in the formulae of the previous Sections we should do the

following replacement

as(Q) = af,(Q7) = as(Q” + Mp) (7)



B. Theoretical approach.
Incorporates the Shirkov-Solovtsov idea (D.V.Shirkov and L.l.Solovtsov,
1997), about analyticity of the coupling constant that leads to the
additional its power dependence.
(K.A.Milton, A.V. Nesterenko, O.Solovtsova, G. Cvetic,
C. Valenzuela, |. Schmidt, O. Teryaev, N. Stefanis, A. Bakulev,
S. Mikhailov, ... )

1 L
a(Q) = o=, do Opp +(22>2

1 PP (o)




Then, in the formulae of the previous Section the coupling con-

stant a(Q?) should be replaced as follows

(@) = 0@t - b MO ®
& T R Mo
at the LO approximation and
) oo 1 A2
aan(Q°) = as(Q7) — 26002 — A2 T (9)

at the NLO approximation, where the symbol ... marks numerically
small terms.

The replacement (8) and (9) is applicable only for
ruther large values of Q?!!!
For lower (J° values it is better to use the fraction
analytic perturbation theory
(A. Bakulev, S. Mikhailov, N. Stefanis, 2005) , but it

direct application is ruther difficult. Now it is in progress.



LI} I LI I LELILAL
Q> =0.85 GeV’]

MML

‘I_""I""IIIII L

Q’=05GeV' | Q

S DO

15F :
1E i :
C ]

05F

O:.... | TR I AT L | AT | L L | AT | L L | T | L
10> 10” 10° 10> 10” 10° 10> 10* 10° 10> 10* 10° 10



Table 1: The result of the LO and NLO fits to H1 and ZEUS data for different low Q? cuts. In the fits f is fixed to 4 flavors.

A, A, Q2 [GeV?] | x2/n.o.p.
Q? > 1.5GeV?
LO 0.784+.016 | 0.801+£.019 | 0.3044.003 754/609
LO&an. 0.932+£.017 | 0.707%£.020 | 0.3394-.003 632/609
LO&fr. 1.0224.018 | 0.6504.020 | 0.356+.003 547/609
NLO -0.2004.011 | 0.9034.021 | 0.4954.006 798/609
NLO&an. 0.310£.013 | 0.640+£.022 | 0.7024-.008 655/609
NLO&fr. 0.1804.012 | 0.780+£.022 | 0.661+£.007 669/609
Q? > 0.5GeV?
LO 0.641+.010 | 0.9374.012 | 0.295+.003 | 1090/662
LO&an. 0.846+.010 | 0.771+£.013 | 0.3284.003 803/662
LO&fr. 1.1274.011 | 0.5344.015 | 0.3584+.003 679/662
NLO -0.192+.006 | 1.087+.012 | 0.4784.006 | 1229/662
NLO&an. 0.281£.008 | 0.634+£.016 | 0.680%.007 633/662
NLO&Ar. 0.205+£.007 | 0.650+£.016 | 0.5894-.006 670/662

e Usage of the analytical and “frozen” coupling constants leads

to improvement with data:

e Really, no difference between results based on the analytical and

“frozen” coupling constants.

v2 decreased twicely




IIl" One example of application the analytical and “frozen” cou-
pling constants: (A.V.Kotikov, A.V.Lipatov and N.P.Zotov, 2004)

New H1&ZEUS (2010) experimental data for Fy:

(F.D. Aaron et al., 2010)
there is a good agreement for Q% > 0.5 GeVZ.



Table 2: The results of LO and NLO fits to H1 & ZEUS data with various lower cuts on Q?; in the fits the 1

f is fixed to 4.

| | A, A, | Q3 [Gev?] | x3/nad.f. |
Q? > 5GeV?

LO 0.62340.055 | 1.204-+0.093 | 0.43740.022 1.00
LO&an. 0.79640.059 | 1.103+0.095 | 0.49440.024 0.85
LO&r. 0.782+0.058 | 1.11040.094 | 0.485+0.024 0.82
NLO -0.25240.041 | 1.33540.100 | 0.70040.044 1.05
NLO&an. 0.102-£0.046 | 1.029+0.106 | 1.017+0.060 0.74
NLO&fr. -0.13240.043 | 1.21940.102 | 0.793+0.049 0.86
Q? > 3.5GeV?

LO 0.54240.028 | 1.089-0.055 | 0.369+0.011 1.73
LO&an. 0.75840.031 | 0.962+0.056 | 0.43340.013 1.32
LO&Tr. 0.77540.031 | 0.950+0.056 | 0.43240.013 1.23
NLO -0.31040.021 | 1.24640.058 | 0.556+0.023 1.82
NLO&an. 0.11640.024 | 0.867+0.064 | 0.90940.330 1.04
NLO&Hr. -0.13540.022 | 1.06740.061 | 0.678+0.026 1.27
Q? > 2.5GeV?

LO 0.52640.023 | 1.049+0.045 | 0.35240.009 1.87
LO&an. 0.761-0.025 | 0.919+0.046 | 0.422+0.010 1.38
LO&r. 0.79440.025 | 0.900+0.047 | 0.42540.010 1.30
NLO -0.32240.017 | 1.21240.048 | 0.517+0.018 2.00
NLO&an. 0.13240.020 | 0.825+0.053 | 0.89840.026 1.09
NLO&Hr. -0.12340.018 | 1.016+0.051 | 0.658+0.021 1.31
Q? > 0.5GeV?

LO 0.3660.011 | 1.052-+0.016 | 0.29540.005 5.74
LO&an. 0.6654+0.012 | 0.804+0.019 | 0.35640.006 3.13
LO&r. 0.87440.012 | 0.575+0.021 | 0.36840.006 2.96
NLO -0.44340.008 | 1.26040.012 | 0.387+0.010 6.62
NLO&an. 0.121-0.008 | 0.656+0.024 | 0.764+0.015 1.84
NLO&Hr. -0.07140.007 | 0.71240.023 | 0.529+0.011 2.79




) ) @ep 5] ) ) [ )
045 Q' =05GeV" —standars | ). + Q=065GeV" 6l + Q=085 GeV’
*.\ —-canahic | ] vl
R Yy -==frozen S .
s 04 " 05
030+
[ 04t
0.75 PR il PR | L .Q':" 1 PR
§ 4 X | .| Q=15CeV" 084 Q"=20GeV*
\}\‘.QA ] Q =12GeV 070 |
0.60 | X d 00 |
0.56
045} 056 - 3
K \‘\‘
| | | il
Wr 2 2
Q" =2.7GeV 1021
08 085}
06l 3 0.68 -
11l " R 1l 1l "
- I Q°=10 GeV*
12F 12} +
10F i
104 i
08 il 1l 1l " " 1l 11l L1
' Q' = 15 Ge\/ 2= 18 GoV?
141+ 141 - e 13 1 Q =18 GeV
\
|
12r 12 12} \
. g
1'0- 11l 11l 1 11l 1l il 111l 11l
10° 10°* 10° 10° 10° 10° 10° 10°* 10°




NEW SCALE

In the generalized DAS approach parton densities tend to some
constant value at z — 0 and at some initial value Qg

The main ingredients of the results are:

1. Both, the gluon and quark singlet densities are presented in
terms of two components (" + " and 7 — ) which are obtained
from the analytic Q?-dependent expressions of the corresponding
(" +7 and 7 — ") PDF moments.



2. The twist-two part of the ” —” component is constant at small
= at any values of (Q%, whereas the one of the ” +” component
grows at Q% > Q% as

N[m(O-)N60-7 0'22 Cz_|_8— l 51 _7
X
B o
P (1))

where o and p are the generalized Ball-Forte variables,

2
= | b= (@) - @)
S12 41

d., — =
By T 278y




At low @Q?, the value of the strong coupling constant is large.
The most important terms, which are singular at n — 1, where n
is the Mellin moment, are collected in the result for 0. So, it is
convenient to choose the scale 112 of the strong coupland at which

the NLO contribution ~ p vanishes. This choise is

p? = Q% exp | (dis +|dy B1/Bo) / (ds| Bo)] ~ 3.89Q°

where the simbol =~ marks the case f = 3, which is relevant at low

()% values. We see that this choise of scale increases effectively the

argument of coupling constant at low x values.
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The results for F5 and for the slope of the SF F5
The double-logarithmic behaviour can mimic a power law shape

over a limited region of =, Q2.

fa(f, Q2> ~ aj_)\gff(x’QZ) and FQ(CE, QQ) ~ gj_)\%];f(xaQZ)
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6. Charm contribution

Consider the contribution of heavy quarks separately (really only
charm one). So, at NLO (f = 3) in the framework of photon-gluon
fusion (PGF)

By, Q%) = Fi(z,Q%) + F(x,Q?),

P Q) = ef |folw. Q) + 2 ay(@))fylr. Q7).

F(@,Q%) = FS(, Q%) ~ My (1, Q% 1) fylw, 1),
where Mo (1, Q?, 12, m?) is the first moment of the corresponding

Wilson coefficient function C5 ,(, Q2 uQ, m%)
Through NLO, M> 4(1, Q?, 112, m?) exhibits the structure

My o(1,Q%, 1°,mg) = ejas(p ){Mz (1,¢)
2
as(u) MY (1, 0) + MY, c)ln—}—FO( 3),

C



2.3 LO results for Iy

The LO coefficient function of PGF can be obtained from the QED
case (V.N. Baier, V.S. Fadin and V.A. Khoze, 1966), (V.G. Zima,
1972), (V.M. Budnev, |.F. Ginzburg, G.V. Meledin and V.G. Serbo,
1974) by adjusting coupling constants and color factors, and they
read (E. Witten, 1975), (J.P. Leveille and T.J. Weile, 1977),
(V.A. Novikov, M.A. Shifman, A.l. Vainshtein and V.I. Zakharov,
1978)

Cé?;(:c, c) = —2x{[1l—4z(2—c)(1 —2x)|B
—[1 = 22(1 — 2¢) + 22°(1 — 6¢ — 42| L(B)},
where
m2 B dex 1+
c=gs B =1-7o . L) =hmi



Performing the Mellin transformation

MY)(Le) = fdea'CY)(x, c),

2,9 2,9
we find
(0) _ 2
ML) = S[142(1— ) (o)
with

1 —+/b : 1

— _Vblnt. t= |
J(e) = =vblut, =D 1 + 4c




2.4 NLO results

The NLO coefficient functions of PGF are rather lengthy and not
published in print; they are only available as computer codes.
(E. Laenen, S. Riemersma, J. Smith and W.L. van Neerve, 1992)

For x < 1, it is possible to use the compact form (S. Catani,
M. Ciafaloni and F. Hautmann, 1994)

C§)(x,¢) = BRY)(1,0),
with
RY(1,0) = 3045 (13 — 106).0(¢) + 6(1 — &)I(c)],
2 0
RY)(1,0) = —4C4MY)(1,0),
where C'y = N for the color gauge group SU(N), and

I(c)=—Vb|((2) + ;1H2t — In(be) Int + 2 Lig(—t)|,



with Lig(z) = — i§(dy /y) In(1 — zy) is the dilogarithmic function.

The Mellin transforms of C’]gj;(:c,c) exhibit singularities in the
limit n — 1. So, now we have the terms involving 1/, which cor-
respond to singularities of the Mellin moments MQ,Q( n)atn — 1
and depend on the exact form of the subasymptotic low-x behavior

encoded in f;t(:zj,MQ). The modification is simple:

R 1dyf i)
n—1 o1 oy fF@pH)T yd e
where = x/b. In the considered case
1 1 1 r 1 1
N 1(o(7)) RPN

oy pl@) I(o(z)  o- &

where o and p were introduced earlier.



Because the ratio f, (z, QQ)/f;(:L’, Q%) is rather small at the

values considered, then

FQC(xa Q2> ~ MQ,Q(L :u27 C)xfg(xa :u2>7

where ngg(l, 11°) is obtained from M 4(n, 11°) by taking the limit
n — 1 and replacing 1/(n — 1) — 1/0.

ME) (1.0 = 311,00~ |~ tutee) — 10 B (= 1.2

with R;{;(l,a) (7 = 1,2) are given above.



3 Results for F;

Using above equations, we fit the new H1&Z EUS data for Fb.
(F.D. Aaron et al., 2010) using our formulas

[\D

Fale, Q) = (@, Q") + Fy(z, Q)
Fi(z,Q°) = 9 [fq($>Q2> +2as(Q2)fg(l’aQ2)]>
F(e, Q%) = qas(@MI(1,0)fyl, 1)
ME (1) = S[1+2(1 — ) (o) (10

As for our input parameters, we choose m, = 1.25 GeV in agree-

ment with Particle Data Group.

The results are in ruther good agreement in the case of the ana-

lytic and “frozen” coupling constnats.



0 ep g5
45 | * Q*=05GeV’ —standard | { + Q’=0.65 Ge\’ 06l + Q= 0.85 Ge\’
—— standardG o ' .
T ----analyticG | T -
*+‘ . -~ frozenG 04l 05
04|

1l s ...0,3.- L0l Lol

Q'=15GeV 08 Q=20 GeV?

Q2 =12 GeV2 0,70 i

0,70 -

0,56 -
L 0,56 -

Q'=27GeV’ 12

0,85-
AN 0,68 I
k) I
Q'=65GeV | I Q= 10 GeV?
12+
I 1|
10 10+
Q°=12GeV'  14f Q=15GeV" |, Q’ =18 GeV*
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4 Results for Fy

We use the LO and NLO formulas

4

FS 10, Q%) = Sas(@)Myy(1,) fy(a, 1),

4
FS n1o(e, Q%) = sas(@){Msy(1,0

tag(p) My)(L,¢) + My (1,¢)ln “2 Mla, 1),

We put uQ — Q? + 4m%, which is the standard scale in heavy
quark production.

The PDF parameters 3, A, and Ag have been fixed in the fits
of FH experimental data (of H1 Collaboration). So, the analysis
of F§ of H1 Collaboration has no free parameters. We have got a

ruther good agreement with H1 experimental data.
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As a next step. we will study an agreement with the new H1&ZEU S

data for 'S (H. Abramowitz et al., 2012) using the corresponding
analysis of H1&Z EU S data for Fy (F.D. Aaron et al., 2010)

Is it possible to fit the mass m(m.).



6. BFKL corrections

(V.S. Fadin, E.A. Kuraev and L.N. Lipatov, 1975, 1976, 1977),
(I.1. Balitsky and L.N. Lipatov, 1978)
(V.S. Fadin and L.N. Lipatov, 1998)

Idea:

(in this section it is convenient to change WDIS/Q — —7)

V+(n) = er +75.(n), (w=n-—1)

?j — BFKL(W) = V(W)
w=4A:x(7), x(v) =29(1) = ¥U(y) = ¥(1 —7),

As = Cypas, V(v)= d(lﬂc(ZZ(V))

where x () is so-called Lipatov characteristic function.

)



I. Bxpansions
(A.V.Kotikov, 2012)

1
X =S 2,5 G2k 48

that is equal

0.9
V=0 1+2k§16(2k+3>’y%+3 0=

or equal to

1
v="0+ 2 O’

with the following nonzero C.:

Cy = 2((3),C5 = 2((5), Cs = 12¢*(3), C7 = 2((7), ...

(11)

(12)



For the renormalization exponent we have the following replace-

ment
a3<cz2> dcm( )
eXp{ 60 CLS QO W }
as 0? da
— expi— 5 ((Qo)> 27( a)}

and the following additional contribution

11 oo C
b k+1 _ - _k k+1
50/& g Cryvo ' (a) 6oak23 L0 (@)

So, there is the additional factor k in denominator. We hope that

in this form the BFKL corrections will be not so large!!!

NLO BFKL corrections can be evaluated in the same way.



I1. Ezact form (LO BFKL)
(H. Kowalski, L.N. Lipatov and D.A. Ross, 2012),
(A.V.Kotikov, 2012)

So, we should consider the contribution

Q2 da

as
exp ——/ a
(5 i) @)
Using integration by parts procedure:
da 1 da dy(a) 1 d~y
15 a) == aa)+ 1 = a4
BFKL:
1 4C
= —Ax(y),
a W
and
(1 —7)




So, we have

1 ay(Q?) da ~ R(Q%
Y {_50/@3@%) aﬂ(a)} -

R(Q5)
where
dy
RQ) = [ | o (o (80) 4 W =)} (13
with
g 4Ca _ _dv __dyg

At ag — 0 (i.e. v — 0) we recover the singular part of the LO

contributions

R(QY) =70 — ag



The following steps:

e To perform the inverse Mellin transformation
(in some approximate form,

because the structure of (13) is rather complicated).

e To perform fits with the terms (13) taken into account.



Conclusion

e | have demonstrated the low x asymptotics of parton densities

and SF F5 and F3.

e Low x asymptotics of F5 are in good agreement with data from
HERA at Q% > 2.5 GeV2.

e Usage of the analytical and “frozen” coupling constants leads to
improvement with data from HERA at Q% < 2.5 GeV?, including
the new H1+ZEUS data for F5.

(F.D. Aaron et al., 2010).

e BFKL corrections taken into account (only first steps).



Next steps:

e To add the NNLO corrections (which has ~ 1/(n —1)? poles at
n — 1). So, the NNLO small-z asyptotics ~ exp|~ (In(1/z))%/?)

is more singular then the corresponding LO and NLO ones
~ I.(~ In(1/x)) ~ exp[~ In(1/z)].

e To consider the new H14+ZEUS data for F5 and to fit me(me).
(H. Abramowitz et al., 2012).

e To finish with BFKL corrections (at LO and NLO levels of ap-

proximation).

e To investigate a usage of less restricted initial conditions



