
h
veragerAtemporary logo

HAverager

Mikhail Karnevskiy1

1DESY

Dubna, 19.02.2016

DESY XFitter workshop Dubna, 19.02.2016 1 / 32



Introduction

Presented tool is based on HERAaverager (also known as H1averager, f2ave).

The tool was originally developed to combined H1-data, later H1 and Zeus
data. Currently it is widely used in ATLAS experiment.

HAverager is a stand-alone programme for combination (averaging) of several
statistically-independent measurements using χ2-minimization approach.

The combination shows the compatibility of the measurements and deliver
the combined value with smaller uncertainties.

Early papers and presentation are here: [1] – [4].

DESY XFitter workshop Dubna, 19.02.2016 2 / 32



Basic χ2

For a measurement µ with uncertainty ∆, assuming a Gaussian shape of the
uncertainty, the measurement can be considered as a probability distribution
function for a “true” quantity m:

P(m) =
1√

2π∆
exp

(
− (m − µ)2

2∆2

)
(1)

This can be written as a χ2 function by taking −2 log (constant term was
skipped):

χ2(m) =
(m − µ)2

∆2
(2)
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χ2 of two measurements

In case of two statistically independent measurements of the case quantity m: µ1,
∆1 and µ2, ∆2, the probability distribution function of m is given by the product
of two:

P(m) ∼ exp

(
− (m − µ1)2

2∆2
1

)
exp

(
− (m − µ2)2

2∆2
2

)
, (3)

which corresponds to χ2 that is given by the sum of the two: χ2
sum = χ2

1 + χ2
2.

χ2(m) =
(m − µ1)2

∆2
1

+
(m − µ2)2

∆2
2

(4)

DESY XFitter workshop Dubna, 19.02.2016 4 / 32



Basic χ2 minimization

Since χ2
sum is a positive definite quadratic form it can be re-written in the form of

Eq. 2. In this case µ is replaced by average µave and ∆ is replaced by the
uncertainty on this average:

χ2
sum(m) =

(m − µave)2

∆2
ave

+ χ2
0, (5)

where the value of χ2
0 measures consistency of the measurements, χ2/NDoF ∼ 1

for consistent measurements.
The value of µave can be found by minimizing χ2

sum with respect to m (this leads
to a usual weighted averaging).
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Basic χ2 for binned measurement

Many experiments measures a number of independent quantities µi which
correspond to the underlying physics values mi (e.g. cross-section measurement in
bins of pT ,Z , where i refers to a bin number). In this case the χ2 function is a
simple sum over the measurements (bins):

χ2
exp(mi ) =

∑
i

(mi − µi )
2

∆2
i

, (6)

Where:

µi - the measurement in the bin i

mi “truth” value in the bin i

∆i statistical uncertainty in bin i
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Bin-to-bin correlated uncertainties

The systematic effects, which affects the measurement µi , are often correlated
across bins. Let’s consider measurement binned in a certain variable, which is
affected by up/down shift of certain parameter:

µi → µi + Γ+
i , µi → µi − Γ−i , (7)

where Γ±i correspond to the variation up/down.
If the correlated systematic uncertainty is approximately symmetric, one can
symmetrize them:

Γi = max(|Γ+
i |, |Γ

−
i |)

Γ+
i

|Γ+
i |
, (8)

i.e. the size of the uncertainty is taken as maximal of up and down variations and
the sign from one of the variations.
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χ2 for correlated uncertainties

Systematic uncertainties, like energy scale, can be also viewed as a result of an
experiment (e.g. measurement of the calibration): there is a “true” detector
energy scale α, measured detector calibration α0 and its uncertainty ∆α.
Therefore, it is natural to add term

χ2
syst(α) =

(α− α0)2

∆2
α

≡ b2 (9)

to the χ2 function. The nuisance parameter b, defined as b = (α− α0)/∆α

corresponds to a coherent change of measurements µi → µi + bΓi . E.g. taking
one σ deviation of the detector energy scale we will back to µi → µi + Γi .
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Resulted χ2

χ2(~m,~b)exp =
∑
i

(mi − µi −
∑

j Γj
ibj)

2

∆2
i

+
∑
j

b2
j , (10)

~b defines a vector of nuisance parameters bj corresponding to each source of
systematic uncertainty,

summation over i runs over all data points, and summation over j runs over
all correlated sources of systematic uncertainty,

Γj
i is the absolute correlated systematic uncertainty,

∆i is the uncorrelated (statistical) uncertainty.

With this definition minimum χ2 is obtained for all mi = µi and bj = 0. If bj = 0
for all j except j = k, bk = 1, then χ2 minimum is archived at mi = µi + Γk

i and it
is equal to 1.
Total uncertainty for a parameter mi defined by ∆χ2

exp = 1 rule corresponds to
the sum of correlated and uncorrelated uncertainties in quadrature:
∆2

i,tot = ∆2
i +

∑
(Γj

i )
2.
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Correction and new features of HAverager

Multiplicative uncertainties

Correction of statistics bias

Asymmetrical uncertainties

Post-rotation of the systematic uncertainties

Everything is now documented in the manual
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Multiplicative uncertainties

Consider two measurements µ1 and µ2 of m. Let’s assume, that µ1 = m + mb,
µ2 = m −mb. Both measurements are performed with the same relative
uncertainty δ. A weighted average of the two measurements returns

µave = m
1− b2

1 + b2
, (11)

which for b = 5% corresponds to 0.5% bias.
The bias occurs because the measurement at smaller value µ2 got smaller
absolute uncertainty δ(m −mb).
Measurements with multiplicative uncertainties can be combined bias-free using
expected values mi instead of measured µi to translate relative to absolute
uncertainties. In this case Eq. 10 takes form:

χ2(~m,~b)exp,mult =
∑
i

(
mi [1−

∑
j γ

j
i bj ]− µi

δimi

)2

+
∑
j

b2
j , (12)
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Stat bias

Let’s consider the counting of number of arbitrary events. Two measurements µ1

and µ2 gives µ1 = N1, µ2 = N2. Statistical uncertainties of the measurement are
estimated as a square root of number of counts. Weighted average for these
measurement returns:

µave =
2N1N2

N1 + N2
, (13)

instead of

µave =
N1 + N2

2
(14)
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Stat bias correction
Bias for statistical average can be removed by using expected instead of measured
number of events. If statistical uncertainty for a measurement is quoted based on
square root of number of measured events, then estimated unbiased relative

statistical uncertainty δstat,cor =
√
m
µ = δstat

√
m
µ . Absolute unbiased statistical

uncertainty can be expressed as:

∆stat,cor = δstat
√
mµ (15)

Finally, the number of observed events can be modified by the correlated
systematic uncertainties. This modification can be taken into account by using

m(1−
∑
j

γjbj) (16)

instead of m in Eq. 15. This brings us to the χ2 formula:

χ2(~m,~b)exp,cor =
∑
i

(mi [1−
∑

j γ
j
i bj ]− µi )

2

δ2
i,statµimi [1−

∑
j γ

j
i bj ] + δ2

i,uncorrm
2
i

+
∑
j

b2
j , (17)
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Asymmetrical uncertainties

In case if assumption of the symmetric systematic uncertainty (expressed by Eq.8)
is not valid for performed measurement, the χ2 Eq. 10 can be written in more
general form:

χ2(~m,~b)exp =
∑
i

(mi − µi −
∑

j fi (bj))2

∆2
i

+
∑
j

b2
j . (18)

If fi (bj) = Γj
ibj , Eq. 18 again back to Eq. 10. Asymmetric systematic uncertainties

can be approximated as:

fi (bj) = Γj
ibj + ωj

i b
2
j , ωi =

Γj+
i + Γj−

i

2
. (19)

χ2 definition in this case become non-linear.
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Iterative combination

For most practical situations the bias is small. Therefore, the expectation mi can
be estimated in an iterative procedure starting from linear formula Eq. 10 and
using mi = µi,ave . The key for the unbiased result is that the same expectation is
used for all measurements.

Similar iterative approach is applied to combine the measurements with
asymmetric systematics uncertainties. The first iteration is performed with
linearised χ2 Eq.10 using symmetrised uncertainties Γ (linear part of f (bj)). The
next iterations are performed with corrected uncertainties Γ′ = Γ + ω ∗ βave , e.g.
correction depends on the systematic shift.
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Post-rotation of the systematics

Sources of the systematic uncertainties before the combination are assumed
to be uncorrelated: one nuisance parameter corresponds to one systematic
source, total uncertainty is a quadratic sum of all sources. Γjbj , δ

2
total =

∑
Γ2
j

After the combination systematic sources are not independent: total
uncertainty is smaller as quadratic sum of all sources. δ2

total >
∑

(Γjbj)
2

Corresponding correlation matrix can be decomposed to deliver new
systematic sources. The number of sources keeped constant, but new
systematics are the linear combination of initial systematics. One can not say,
which source is which. δ2

total =
∑

Γ2
new ,jbnew ,j , Γnew =

∑
Γk lk

The correlation matrix can be rotated such a way, that at least one
systematic source have the same origination (e.g. energy scale).
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Steering parameters. HAverager

&HAverager

OutputMode = ’ORTH’

OutputPrefix = ’Ave’

OutputFolder = ’../output’

IDebug = 0

WriteOriginal = .false.

WriteSysTexTable = .false.

PostRotateSyst = .true.

&End

OutputMode - is the output options for the systematics uncertainties.

I ’ORTH’ - orthogonal representation
I ’ORIG’ - original structure of the systematic uncertainties.

IDebug - Debug level. Higher value corresponds to more debug messages.

WriteOriginal - include original information to the output summary (file ave Ave.dat)

WriteSysTexTable - write output information about systematic uncertainties in tex format
(file sys.tex)

PostRotateSyst = .true. keep output systematic uncertainties align to the original
sources as much as possible.
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Steering parameters. BiasCorrection

&BiasCorrection

AverageType = ’MIXED’

Iteration = 10

! Rescale the stat and uncorr uncertainties separately:

RescaleStatSep = .false.

! Correction of the syst bias for stat errors

CorrectStatBias = .false.

! Keeping the stat errors fixed’

FixStat = .false.

&End

AverageType define the type of the systematic uncertainties

I ’ADD’ - all systematic uncertainties are processed as additive
I ’MULT’ - all systematic uncertainties are processed as multiplicative
I ’MIXED’ - type of systematic uncertainties is taken from the data file
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Correlation of systematic uncertainties

χ2 definition assume the knowledge about the correlation between sources of
systematic uncertainties and across bins. Also it assumes, that uncertainties
are Gaussian.

With respect of these assumptions a certain behaviour of combined results is
expected (e.g. Gaussian behaviour of pulls). Significant deviation in this
behaviour indicate some problems with considered uncertainties or central
values.

These requirements on the input data can be fulfilled only with intensive
communication between fitting and analyses groups.

I Exact requirements on the data have to be clarified
I Instruments and instructions, which helps to fulfil these requirements have to

be provided
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New prospects of HAverager

The code of the HAverager was cleaned from HERA scripts (“swimming”)

Few parts of the code were optimized with respect of the timing profile.
Filling arrays is a bottle-neck

HAverager as a python library
I The data-reading and filling of internal variables can be implemented using

existing python libraries (pandas, numpy)
I The fortran code of the HAverager-kernel can be easily compiled as a python

library
I Advantages: still very fast, suitable for the very large data sets (allocatable

arrays, no hand-written limitations on the array-length), easily-readable scripts
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Python HAverager

import numpy as np

import pandas as pd

# Get averager

from haverage import *

# Read data:

a = pd.read_csv("bla1.csv")

b = pd.read_csv("bla2.csv")

# Prepare arrays of data and uncertainties

........................

# Perform averaging

t,u,f = haverage(d,e,s)

# Print results

print (t)

print (u)

print (f)

Reading data, creating a grid of bins, preparing arrays and printing results are
performed with python.
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Summary/Plans

New version of the averaging package is nearly ready. Several new features,
such as asymmetric uncertainties, post-rotation of the systematic sources are
implemented. HAverager will be available as an open-source package.

HAverager is a standalone package based on a Fortran code, which can be
used as a python library. An example is given.

HAverager have a certain requirements on the input data, which can be
fulfilled only with intensive communication between data-post-processing and
data-extractor groups.

It would be interesting to compare HAverager with much-slower
likelihood-based programs. Can we pretend to be suitable for low-statistics
data?
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Backup
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Pulls χ2

The pull of the central values:

pi,e =
µi,e − µi,ave(1−

∑
j γ

j
i,eβj,ave)√

∆2
i,e −∆2

i,ave

, (20)

where γji,e = Γj
i,e/µi,ave . This definition is similar to the χ2 definition, but not

summed over bins. These pulls show how the average measurement are shifted
compare to individual measurement and also have two contributions, similar to χ2.
The pull for systematic uncertainties can be defined as:

pi =
βi,ave√
1− D2

ii

. (21)

This value shown, how significant was the systematic shifted due to the
combination. The large systematic pull suggests, that systematic uncertainty was
not correctly estimated.
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Sum of several χ2

The sum of two χ2:

χ2(~m,~b)sum =
∑
e

NM∑
i

(
mi − µi,e −

∑NS

j Γj
i,ebj

)2

∆2
i,e

Wi,e +

NS∑
j

b2
j , (22)

i runs over all measured points NM

j runs over all sources of systematic uncertainties NS

symbol Wi,e is equal to 1 if data set e contributes to a measurement at the
point i , otherwise it is 0.

Γi
j,e equals to 0 if the measurement i from the data set e is insensitive to the

systematic source j .

The dimension of ~mave is equal to dimension of union set of ~m1 and ~m2. e.g. if
both experiments measure for the same binning, NM1 = NM2 = NM,ave = NM .
Similarly, for the systematic uncertainties NS,ave = NS1 + NS2 − NS,common = NS ,
where NS,common is the number of common systematic error sources for the two
measurements.
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χ2-minimization

Since χ2
sum is a quadratic form of ~m and ~b, it may be rearranged such that it takes

a form similar to Eq. 5.

χ2(~m,~b) = χ2
min +

NM,ave∑
i

(
mi − µi,ave −

∑NS,ave

j Γj
i,ave(αj − αj,ave)

)2

∆2
i,ave

+

+

NS,ave∑
j

NS,ave∑
k

(αj − αj,ave)(αk − αk,ave)(A′S)jk , (23)

where

µi,ave are average values of measured quantities

∆i,ave are their uncorrelated uncertainties

The values of αj,ave , ∆i,ave , µi,ave and matrix A′S are determined by minimization
of χ2 function in Eq. 22 with respect to mi and bj .
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minimized χ2

After diagonalizability of matrix A′S , χ2 function in Eq. 23 can be re-written in
form, similar to Eq. 10:

χ2(~m, ~b′)tot = χ2
min +

NM∑
i

(mi − µi,ave −
∑NS

j Γj
i,aveb

′
j)

2

∆2
i,ave

+

NS∑
j

(b′j)
2, (24)

where b′j =
∑

k Ujk(bk − βk,ave)Djj .
The orthogonal matrix U connecting the systematic sources before and after
averaging with Eq. 29. Diagonal elements of matrix D shows, how the
uncertainties of combined measurement Γj

i,ave are reduced, compared to initial
systematic uncertainties.
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χ2-minimization
The minimum of Eq. 22 is found by solving a system of linear equations obtained
by requiring ∂χ2/∂mi = 0 and ∂χ2/∂bj = 0 which can be written in matrix form(

AM ASM

(ASM)T AS

)(
Mave

Bave

)
=

(
CM

CS

)
(25)

where

vector Mave corresponds to all measurements

vector Bave corresponds to all sources of the systematic uncertainties

matrix AM has a diagonal structure with NM,ave diagonal elements

Aii
M =

∑
e

Wi,e

∆2
i,e

Aij
SM = −

∑
e

Γj
i,e

∆2i,eWi,e

Aij
S = δij +

∑
e

∑NM

k

Γk
i,eΓk

j,e

∆2
k,e

Wk,e

C i
M =

∑
e
µi
e

∆2
i,e
Wi,e

C j
S = −

∑
e

∑NM

k

µk
e Γk

j,e

∆2
k,e

Wk,e

Here δij is the Kronecker symbol. The matrix ASM has dimension NM × NS while
the matrix AS is quadratic with NS × NS elements.
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Average values

Using the method of the Schur complement, the solution is found as:

A′S = AS − (ASM)TA−1
M ASM

Bave = (A′S)−1(CS − (ASM)TA−1
M CM)

Mave = A−1
M (CM − ASMBave) (26)

Given the components of the vector Bave , βj,ave = αj,ave/∆αj
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Average values

The solution for µi,ave can be written in explicit form:

µi,ave =

∑
e

(
µi,e +

∑
j Γi

j,eβj,ave

)
Wi,e

∆2i,e∑
e

Wi,e

∆2
i,e

(27)

The uncorrelated uncertainty squared is determined by the inverse of the elements
of the diagonal matrix AM :

∆2
i,ave =

1∑
e

Wi,e

∆2
i,e

(28)

Eq. 27 and 28 reproduce the standard formula for a statistically weighted average
of several uncorrelated measurements when all shifts of the systematic error
sources are set to zero. The values of βi,ave in Eq. 27 show, how the combined
measurements µi,ave are shifted, compared to initial measurements µi,e in terms of

systematic uncertainties Γj
i,e .
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Diagonalization of A′S

The non-diagonal nature of the matrix A′S expresses the fact that the original
sources of the systematic uncertainties are correlated with each other after
averaging. The matrix A′S can be decomposed to re-express Eq. 10 in terms of
diagonalised sources of systematic uncertainties:

DD = UA′SU
−1 Γave = ASMA−1

M D−1U−1 (29)

Here U is an orthogonal matrix composed of the eigenvectors of A′S , D is a
diagonal matrix with corresponding square roots of eigenvalues as diagonal
elements and Γave represents the sensitivity of the average result to these new
sources. Its elements are the Γj

i,ave .
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