Cathode plane material selection

Cathode requirements

- Reasons for resistive cathode:
 - Stored energy in DUNE is sufficient to potentially damage the cryostat membrane
 - The ground plane potentially mitigates this.
 - The voltage swing of the cathode during discharge produces a voltage pulse on the preamps. Simple simulation showed the current in the protection diode is a factor of two less than the diode rating. The resistive cathode reduced this current by orders of magnitude.
- Surface resistivity in the 1 to 100 MOhm/square is required.
- Planarity within 1 cm.

Investigated materials

- MiCarta ("bakelite")
 - Intrinsic bulk resistivity in the required range (few MOhm/cm)
 - Density comparable to LAr
- G10 vetronite coated with resistive layers:
 - ~ Mohm/square ink print with specific patterns
 - Glued bulk resistive kapton foil (25 μ m, 6-9 MOhm/cm)
 - Graphite loaded (outer layers) G10

Radiological measurements

•	sample: black weight: live time:	t: 23.0 g			sample: Current Inc., C770 ESD (Electro-Static Dissipative material), G10/FR4 (glass/epoxy) weight: 89.0 g live time: 830876 s detector: GePaolo			
•	detector:	GePaolo	radionuclide concentrations:					
•	radionuclid	radionuclide concentrations:			(54 +- 8) mBq/kg		(13 +- 2) E-8 g/g	
•	Th-232:			Th-228	(49 +- 6) mBq/kg	<==>	(12 +- 2) E-8 g/g	
•	Ra-228:	(15.2 +- 0.5) Bq/kg <==>	(3.74 +- 0.13) E-6 g/g	U-238:				
•	Th-228	(15.8 +- 0.5) Bq/kg <==>	(3.88 +- 0.13) E-6 g/g	Ra-226 Pa-234m	(47 +- 5) mBq/kg < 0.52 Bq/kg	<==> <==>	(3.8 +- 0.4) E-9 g/g < 4.2 E-8 g/g	
•	U-238:							
•	Ra-226	(9.1 +- 0.3) Bq/kg <==>	(7.4 +- 0.2) E-7 g/g	U-235	< 6.9 mBq/kg	<==>	< 1.2 E-8 g/g	
•	Pa-234m	(6 +- 3) Bq/kg <==>	(5 +- 2) E-7 g/g	K-40:	(4.9 +- 0.3) Bq/kg	<==>	(1.6 +- 0.1) E-4 g/g	
•	U-235	< 0.24 Bq/kg <==>	< 4.2 E-7 g/g	Cs-137	< 3.7 mBq/kg			
•	K-40:	(7.6 +- 0.6) Bq/kg <==>	(2.5 +- 0.2) E-4 g/g	upper limits with k=1.645, uncertainties are given with k=1 (approx. 68% CL);				
•	Cs-137	s-137 < 50 mBq/kg			Ra-228 from Ac-228; Th-228 from Pb-212 & Bi-212 & Tl-208;			
•	••	s with k=1.645, es are given with k=1 (approx. 68% CL)	Ra-226 from Pb-214 & Bi-214; U-235 from U-235 & Ra-226/Pb-214/Bi-214					

Ra-228 from Ac-228;

• Th-228 from Pb-212 & Bi-212 & Tl-208;

- Ra-226 from Pb-214 & Bi-214;
- U-235 from U-235 & Ra-226/Pb-214/Bi-214

MiCarta is worse than G10 for Uranium/Thorium/Potassium... chains

Additional tests

- Resistivity:
 - Discrepancies found depending on measurement method but all measures are within the required range for all materials both at warm and cryogenic temperatures.
- Robustness to sparks:
 - Sparks arising much above the design value of 20 kV/cm both in air (>40 kV) and LAr (> 55 kV)
 - Spark development depends on coating structure/symmetry but are always localized with in few cm radius
 - Micarta slightly more robust (local carbonization visible on kapton/ink after several hundreds sparks).

Material choice

- G-10 preferred over MiCarta.
- Advantages:
 - Lower radiological
 - Denser than LAr (CPA will not float)
 - Stronger than MiCarta
 - Cheap
 - Cathode inner frame does not need to be resistive.

Proposed baseline option for CPA

- Sandwich of thin G10 foils with resistive coating mounted on G10 bar frame:
 - Total thickness ~1 cm seems feasible.
 - Coating choice can be defined
 - Density larger that LAr eases suspension and planarity
- Resistive outer frame:
 - subject to the highest local fields
 - G10 round bars: resistive coating to be carefully studied.

Issues

- Stability of coating on G10 support at LAr temperature
- Aging of resistive coating
- Electrical connection to HV distribution bus
- Panel-to-panel electrical connections