Cold Cable & Signal FT for DUNE TPC Readout

MAY 20TH, 2015

HUCHENG CHEN

BROOKHAVEN NATIONAL LABORATORY

Outline

- Introduction
- Cold Cable
 - 35T Implementation
 - Other option
- Signal Feed-through
 - Single FT with ATLAS pin carrier
 - Other option
- Summary

TPC Readout Electronics

Cold Electronics for Far Detector

Cold Electronics on TPC Frame

- Cold electronics will be installed at the end of the TPC frame
 - Close to the top or the bottom of the cryostat
- Cold cable will route the signals from cold electronics to signal feed-through
 - Distance could be short (top) or long (bottom)

2015/05/20

H. Chen - Cold Cable & FT

Cold Cable & Signal FT

- Cold cable functionalities
 - Data transmission
 - Stream ADC samples out of cryostat
 - Differential cable for high speed signal transmission
 - Data rate is 1 Gb/s
 - Timing and control
 - Receive clock and commands
 - Differential cable for signal receiving
 - Data rate to be determined
 - Slow control
 - I2C for configuration of FEMBs
 - JTAG for FPGA configuration in 35T
 - Power distribution
 - Supply power to cold electronics
 - Low voltage power distribution: <= 5V</p>
- Signal FT is to provide all of these penetrations on cryostat

Cold Cable

# of Wires of	128-ch	128-ch	
Cold Cable	FEMB/FPGA	FEMB/Digital ASIC	
Data Tx	8	8	
Control Rx	4	4	
JTAG/I2C	12	4	
Power	14	12	
Subtotal	38	28	
APA (20xFEMB)	760	560	

- Cold digital ASIC is taking care of the interface to warm electronics, and configuration of FE and ADC ASICs
 - This will make the cable plant reduced by ~30%
- Each FT will handle 2 APAs, total 1,120 signal penetrations
- This is a conservative approach and further optimization is planed
 - DC-DC converter will be explored with added risks

Cold Cable in 35T

- Data transmission, timing and control
 - Custom twinax cable made by Gore
 - AWG24 cable, good quality
 - Bulky, ERNI connector is not fully utilized (only 8 out of 40 pairs)
 - Each FEMB has a dedicated connection

Test of Twinax Cable & ATLAS Pin Carrier

- 50 ft of Gore twinax cable has been tested with ATLAS pin carrier running at 2Gb/s successfully
- Cable is being used in 35T

Cold Cable in 35T APA Test

Optimization of Cold Cable

36-position, 8F36 Series

68-position, 8F68 Series

- Various options are being explored to find an alternative solution
 - Termination of cold cable needs to be optimized
- 3M Mini-SAS Twin Axial Cable
 - <u>http://www.3Mtwinax.com</u>
 - Sample of 15 meters & 25 meters 3M cable has been received
 - Test board has been designed and fabricated for cable test
 - Main concern is the attenuation over 15/25 meters cable
- Other manufactures are being contacted
 - Gore
 - Samtec
 - Hitachi
- A sample of Hitachi PFA insulated cable has been tested and certified in MTS at Fermilab in April

Signal Feed-through

- Baseline design is to use ATLAS pin carrier for a single warm signal feed-through flange
 - MicroBooNE uses a warm flange with ATLAS pin carriers, total 1,920 pins on 14" CF flange
 - ATLAS LAr Calorimeter with ~230 signal feed-through flanges, ~450,000 penetrations in total, has been operated for ~10 years without leaking
 - Methodology of lifetime study of feed-through to be developed

H. Chen - Cold Cable & FT

PCB Based Signal Feed-through

- Cost of a signal feed-through with ATLAS pin carrier is > \$10k per flange
- A PCB based solution is being considered to reduce the M&S cost
 - ICARUS style feed-through, PCB is glued between SS rings
 - Working on collaboration with INFN Padova

3D Model of PCB Based Signal FT

- The standard CE flange is cut into 2 pieces with a printed circuit board
- The standard CF flange is cut into 2 pieces with a printed circuit board sandwiched in
- The PCB is glued on both sides to the two stainless steel pieces
- SHV connectors are welded on CF flange
- Stress analysis and thermal analysis are ongoing 2015/05/20
 H. Chen - Cold Cable & FT

Stress Analysis of 12" Flange

- Deformation is less than 4um at 0.1 MPa
- Model will be adjusted for 14" CF flange configuration

2015/05/20

H. Chen - Cold Cable & FT

Summary

- Conceptual design of cold cable and signal feed-through have been presented
 - Lessons and experience are learned from 35T implementation – flange board potted in SS flange
- Various options are being explored to optimize the cold cable design
- Signal feed-through design is based on existing design of ATLAS pin carrier
- Low cost PCB based feed-through design is being explored, with aim to reduce the M&S cost
 - Collaboration with INFN Padova is being sought on signal feed-through development

Backup Slides

Cold Electronics Cabling

- One 128-ch FEMB (front end mother board assembly)
 - Data transmission
 - 4 differential pairs running at 1 Gbit/s
 - Timing and control
 - 2 differential pairs for clock and command
 - Slow control
 - 4 wires for I2C: differential signals
 - 8 wires for JTAG: 4 wires are JTAG signals, 4 wires are return lines
 - FPGA only
 - Power distribution
 - 14 wires for 7 voltage lines and 7 return lines
 - 3 voltage lines for analog mother board
 - 3 voltage lines for digital mezzanine with cold digital ASIC
 - 4 voltage lines for FPGA mezzanine

Cold Electronics Cabling

- One 128-ch FEMB
 - Signal cable 26 wires, tentatively AWG24
 - Power cable 12 wires, tentatively AWG20
- One APA has 20 128-ch FEMBs
 - Signal cable 520 wires
 - Power cable 240 wires
- Assuming each FEMB has separate cable sets
 - No redundancy is provided
 - No daisy chain among different FEMBs
 - Cabling might have three different sets: one for high speed signals, one for control signals, and one for power distribution
- Routing of cold cable needs to be developed
 - One possibility is to route the cables along the cryostat walls
 - Will it be possible to route the cables along the APA frames?
 - Will cables be connected to FEMB directly, or through an intermediate interface?

Comparison of Feed-through

	# of Channels/FT	# of Pins/FT	Ratio (Ch/Pin)
MicroBooNE	768	1664	0.46
SBND - Cold			
FPGA	2816	836	3.37
DUNE FD - Digital			
ASIC	5120	1120	4.57

- Comparison of number of readout channels vs. number of pins (or penetrations) on feed-through
- ADC and multiplexing in DUNE FD will make the efficiency of feed-through penetration improved by *factor of 10* compared to MicroBooNE
 - There will be 75 signal FTs instead of **750** for 10 kt detector

ATLAS Pin Carrier

Manufactured by:

Glasseal Products, Inc., 485 Oberlin Ave., Lakewood, N.J. 08702

Either 64x7 or 64x8 pins per unit. 0.1" pin pitch

ATLAS Barrel Calorimeter

ATLAS Endcap Calorimeter

H. Chen - Cold Cable & FT

Photos of an ATLAS Warm Flange

