

Monotop searches at the LHC

Fuks Benjamin

LPTHE - CNRS - UPMC

LHC Dark Matter WG public meeting

10-11 December 2015

Monotops at hadron colliders: the general case

- The bottom-up strategy: we start from the final state signature and build a model
- Allows us to simultaneously analyze several new physics models, e.g.,
 - Supersymmetric compressed spectrum: undetected soft objects
 - ◆ Dark matter models with a mediator coupling to quarks in a flavor-violating way
 - detc.

◆ Generic monotop production

- Missing energy (dark matter candidate or mediator decaying to dark matter particles)
 - ★ Bosonic or fermonic state
 - **★** One-particle or n-particle state
 - ★ Neutral, weakly-interacting, long-lived/stable/invisible
- Initial state: two possibilities
 - **★** A down-type (anti)quark pair → baryon-number-violating process
 - ★ An up-type quark / gluon associated pair → flavor-changing neutral interactions

Two classes of models

[Andrea, BF, Maltoni (PRD 'II)]

Flavor-changing monotop production (I)

- lacklost Simplified model Lagrangian: $\mathcal{L} = \phi \bar{u} a_{FC}^0 u + V_\mu \bar{u} a_{FC}^1 \gamma^\mu u$
 - V/ϕ l mass 400000

[Andrea, BF, Maltoni (PRD 'II)]

- Two `flavor-changing' models
- \P V (ϕ) is the mediator and is connected to the dark sector (invisible decay)
- Three parameters for each model
 - **★** The mediator mass and the couplings (left and right-handed)
- This class of scenarios has been investigated by CDF and CMS

[CDF (PRL '12)] [CMS (PRL '15)]

- The coupling is taken as a vector / scalar coupling and factorizes
 - > one free parameter (the mediator mass)
- Limits given on the signal cross section for a given coupling strength

> Easy to reinterpret

Flavor-changing monotop production (2)

♦ What about the electroweak symmetry?

[Boucheneb, Cacciapaglia, Deandrea, BF (JHEP '15)]

- *We impose the monotop signal to be the most important way to probe the model
 - ★ The mediator and is a vector state
 - ★ It couples to the right-handed quarks only

$$\mathcal{L}=~a_R^{ij}~V_{\mu}ar{u}_{R,i}\gamma^{\mu}u_{R,j}$$

- One single model and two parameters
- Other cases (scalar mediator, different couplings): New physics should appear in other channels first

◆ This class of scenarios has been investigated by ATLAS

[ATLAS (EPJC '15)]

- Parameter space 2D-scans have been performed
- Easy to reinterpret

Resonant monotop production (1)

Simplified model Lagrangian:

$$\mathcal{L} = \epsilon^{ijk} \varphi_i \bar{d}^c_j a^q_{SR} d_k + \varphi_i \bar{u}^i a^{1/2}_{SR} \chi + \epsilon^{ijk} X_{\mu,i} \, \bar{d}^c_j a^q_{VR} \gamma^\mu d_k + X_{\mu,i} \, \bar{u}^i a^{1/2}_{VR} \gamma^\mu \chi$$

[Andrea, BF, Maltoni (PRD 'II)]

- ❖ Two `resonant' models
- Not really connected to dark matter
 - ★ Less minimal models however exist (e.g., hylogenesis) [Davoudiasl et al. (IJMPA'12)]
- \clubsuit The fermion χ is long-lived (but not stable) or connected to some dark sector
- 6 parameters for each model
 - **★** Two masses (resonance + invisible fermion)
 - ★ Four couplings (left and right-handed) if only one production channel is considered
- This class of scenarios is being investigated by CMS (analysis not public)
 - The model must be simplified
 - ★ The width of the resonance is tuned so that the monotop branching is I (the a^{1/2} parameters are not relevant anymore)
 - **★** The a^q coupling is fixed to be of a scalar (vector) type (and factorizes)
 - 2D mass plane to probe
 - Mostly easy to reinterpret (if the NWA holds)

Resonant monotop production (2)

♦ What about the electroweak symmetry?

[Boucheneb, Cacciapaglia, Deandrea, BF (JHEP '15)]

- ❖ We impose the monotop probe to be the dominant way to test the model
 - ★ The resonance and is a scalar that couples to a pair of right-handed quarks
 - ★ The invisible fermion is a SM singlet and couples to right-handed quarks

$$\mathcal{L} = \lambda_s^{ij} \; arphi_s \, ar{d}_{R,i}^C d_{R,j} + y_s \; arphi_s^\dagger \, ar{\chi} t_R + ext{h.c.}$$

- One single model and four parameters
 - **★** Two masses (resonance + invisible fermion)
 - **★** Two coupling strengths

[ATLAS (EPJC '15)]

- ◆ This class of scenarios has been investigated by ATLAS
 - **Simplification:** $\lambda = y$; $m_{\varphi} = 500$ GeV
 - \geq 2 parameters: y and m_{χ}
 - Not easy to reinterpret
 - ★ Different resonance and invisible masses?
 - ★ The resonance width must be calculated for each benchmark before comparing

Summary

Flavor-changing monotop production

Fits in the DM context

- ❖ CMS: SU(3) x U(1) based model
 - ★ Vector (or scalar) mediator with vector (or scalar) couplings to the quarks
 - ★ Several models, simplified ➤ one relevant parameter for each model
- ♣ ATLAS: SU(3) x SU(2)xU(1) based model
 - ★ Vector mediator couplings to the right-handed quarks
 - ★ One relevant parameter
- * Both approaches easy to reinterpret by theorists

Nothing to be changed (?)

★ Resonant monotop production

Fits more hardly in the DM context

- ♣ CMS: SU(3) x U(1) based model
 - ★ Vector (or scalar) resonance with vector (or scalar) couplings
 - ★ The BR of the resonance into a monotop system is I
 - ★ Several models, simplified ➤ two relevant mass parameters for each model
- ♣ ATLAS: SU(3) x SU(2)xU(1) based model
 - ★ Scalar resonance (with a fixed mass) with right-handed couplings taken equal
 - ★ The resonance width must be calculated for each scenario
 - **★** Two parameters
- * ATLAS configuration not easy to reinterpret (resonance mass and width issues)

